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Abstract: In 2022 and 2023, the Electricity System Operator of Great Britain introduced the first-ever country-
level Demand Flexibility Service, a program aimed at encouraging utilities and the general population to curtail
energy demand during peak times. The DFS auctioned off MWh reductions to the grid. Octopus Energy, a utility
company, implemented its version of the program called Saving Sessions. This initiative comprised 13 individual
demand response sessions offered to 1.4 million Octopus Energy customers, with incentives awarded to customers
for reducing their energy consumption. Utilizing comprehensive consumer data and employing various identifi-
cation methods, we estimated the impact of this nationwide program on energy demand and economic welfare.
Additionally, we conducted a natural field experiment involving different advance notice periods and incentives
provided to customers for their participation in a Saving Session. We found: (i) the Saving Sessions resulted in a
10% reduction in energy demand associatedwith being invited to participate and, based on an estimated local aver-
age treatment effect, a 40% reduction from those actively opting in to Sessions (where individuals manually made
adjustments within their homes to change demand); (ii) shorter advance notice periods for signed up customers
dampened the demand response from these households by 25%, according to our preferred model specifications;
and (iii) the Saving Sessions demonstrated a marginal value of public funds between 1.05 and 2.6, depending on
when the grid is approaching a blackout, indicating that the program yielded positive benefits relative to the costs
involved.
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1 Introduction

The effective management of energy supply and demand is a major responsibility for grid operators. Indeed, bal-
ancing these elementary forces is crucial to preventing blackouts at the level of entire cities, states, and countries.
Yet, despite the risk such disruption poses to economic well-being (Allcott et al., 2016, Burgess et al., 2020, Bur-
lando, 2014, Cole et al., 2018, Fisher-Vanden et al., 2015, Fried and Lagakos, 2023, Gertler et al., 2016), blackouts
are frequent occurrences across the world, both in developing and developed countries. While their causes vary,
contributing factors include uncertainties in energy imports (Fotis et al., 2023, Złotecka and Sroka, 2018), the inter-
mittent nature of renewable energy generation (Carreras et al., 2021, Gowrisankaran et al., 2016, Karaduman, 2021,
Masood et al., 2018, Wolak, 2022, Yan et al., 2018), and the growing incidence of extreme temperature events (Feng
et al., 2022, Jahn et al., 2022, Panteli and Mancarella, 2015). Even small shortfalls in supply can cause cascading
effects to all consumers in a given market (Borenstein et al., 2023).

To clarify how best to manage energy supply and demand, economists have investigated pricing mechanisms
and contracts, focusing on, for instance, peak-time pricing (Houthakker, 1951, Joskow, 1976) and interruptible con-
tracts, whereby customers receive payments or pay lower prices for energy in exchange for acceptance of service
interruptions during periods of grid constraints (Allcott et al., 2016, Baldick et al., 2006, Tan and Varaiya, 1993).
Research on peak-time (or termed “critical-peak”) pricing has been especially plentiful. However, despite numer-
ous smaller-scale evaluations of the impact of peak-time pricing on energy demand (e.g., Andersen et al. (2019),
Bollinger and Hartmann (2020), Burkhardt et al. (2023), Caves and Christensen (1980), Caves et al. (1984), Jessoe
and Rapson (2014), Wolak (2007)), there exists no causal evidence around the efficacy of nationwide peak-time
pricing campaigns to generate energy flexibility potential that are linked to the national grid management.1 Here
we investigate a nationwide policy to pay consumers to reduce their energy during periods of timewhen a blackout
could occur or carbon-intensive dispatchable energy generation would otherwise be required.

Specifically, we analyzed data from the UK’s largest-ever demand flexibility program, which was designed to
reduce energy demand at key moments throughout the Winter of 2022-23. The nationwide program is the first
of it’s kind at the level of the country grid operator. This program — known as the Demand Flexibility Service
(DFS)—was led by Great Britain’s National Grid Electricity System Operator (NGESO) who crafted the program
in response to the 2022-23 energy crisis to gauge consumer appetite for reducing electricity demand to help re-
lieve grid pressure and supply scarcity. The DFS involved 22 events taking place from November 2022 to March
2023 during periods of peak energy demand for which British households and businesses were asked to use less
electricity.2 DFS events varied in duration, ranging from one to two hours, and consumer demand reduction was
formally remunerated via a price incentive. Specifically, DFS events were organized by NGESO but provided by
energy retailers and other aggregators of customers. NGESO gave DFS providers a financial incentive of at least
£3,000 for every megawatt hour (MWh) of reduced energy demand.3 DFS providers were then free to determine
how to use their payment from NGESO, allocating some or all of it to incentivizing consumers to reduce demand.

We focused on the 13 DFS events delivered by Octopus Energy— an energy retailer in Great Britain (and other
markets) that was the largest of the DFS providers in terms of both the number of participating customers and the

1Research has also explored interventions that are not based on pricing. For example, consider research on conservation appeals and social
comparisons during peak consumption periods (Bergquist et al., 2023, Brandon et al., 2019, Ito et al., 2018) in addition to responses to national
energy crises such as that of Germany in relation to the Russian-Ukraine war (Moll et al., 2023). There is also a literature on real-time pricing
that relates to peak-time pricing (Wolak, 2011).

2By peak consumption, we mean energy usage during times when demand on Great Britain’s national grid is highest. These periods
generally occur from 09:00-11:00 and 16:30-19:30, Monday through Friday.

3During DFS events, the marginal unit of energy would have been sourced from a carbon-intensive gas or coal-fired power plant, incurring
a marginal private cost of £835/MWh on average for the NGESO, with a maximum cost to NGESO of £5500/MWh.
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level of energy reduction achieved.4 We investigated whether Octopus Energy’s invitations to customers to par-
ticipate in its variant of NGESO DFS events — branded by Octopus Energy as “Saving Sessions” — impacted cus-
tomers’ electricity demand (in kilowatt hours (kWh)) during events. In so doing, we aimed to better understand
the implications of large-scale demand response peak-pricing campaigns to engage in flexible domestic energy de-
mand.5 Octopus Energy allocated the majority of its NGESO payment to incentivizing consumers (between £2.25
and £4 per kWh reduced below a customer-specific baseline),6 allowing us to test how the real-time marginal cost
of energy can be used as an incentive for energy demand curtailment.7

Causal effects in relation to peak-pricing campaigns are likely to differ between small-scale field experiments
and analyses of nationwide data. This difference is because of the totality of the latter. That is to say, during nation-
wide peak-pricing campaigns, grid operators such as NGESO typically aim to reduce consumption using pricing
mechanisms in addition to an array of state-level communication and political channels. Thus, a priori, we expect that
consumer attention and, by extension, consumer behavior will differ in such saturated information environments,
and that this difference will yield treatment effects that diverge from those obtained from small-scale experiments
(Brewer and Crozier, 2023, Costa and Gerard, 2021, Holladay et al., 2015, Olexsak and Meier, 2014, Prest, 2020,
Reiss and White, 2008).8

Keeping this distinction in mind, we recovered causal effects in the context of NGESO’s peak-pricing cam-
paign by exploiting the structured, two-part nature of consumer engagement with DFS events. Octopus Energy
customers were first required to explicitly agree to take part in the overall Saving Sessions campaign (hereafter,
one-time “sign up”). Once signed-up, Octopus Energy customers were required to explicitly agreed to participate
in individual Saving Sessions (hereafter, event-specific “opt in” or “Session participation”) in response to digital
appeals (hereafter, “opt-in notices”) sent to customers by Octopus Energy. Opt-in notices typically: (a) commu-
nicated the price incentive associated with participation in a specific session; and (b) provided customers with a
hyperlink through which they could opt in to a specific session. In general, opt-in notices took the form of emails
to Octopus Energy account holders and/or notifications to the account holder via the Octopus Energy mobile ap-
plication.9

4As of June 2023, Octopus Energy was the third largest domestic electricity supplier in Great Britain, serving 16.9% of GB’s domestic
electricity market (Ofgem, 2023c). Overall, NGESO spent £11M on incentives for the whole Demand Flexibility Service, of which Octopus
Energy’s Saving Sessions received £6M (National Grid, 2023d); for details, see Table AT.30.

5All of the treatments had a financial component, as customers were encouraged to take part in Saving Sessions using economic rewards
(see Table 1 and Sections 2.2 and 2.3) — and a portion of our analysis focuses on the causal impact of a “bonus” cash incentive on top of the
typical reward rate (Section 4.4). All of our treatments hybridized a text-based appeal (Bergquist et al., 2023) with a financial incentive, where
the digital appeal serves as the vehicle through which the financial incentive is offered (e.g., see Figures 1 and 2). However, there is previous
research that suggests that informational appeals do notmeaningfully change demand during peak events (Burkhardt et al., 2023) and demand
overall (Andor et al., 2022).

6TheUKDFS keeps people’s tariffs the same but simply pays people to reduce demand during key half-hours. NGESO prescribed a specific
methodology to derive a “baseline” consumption for each participating customer, against which they compared actual consumption to derive
an estimate of individual-customer-level demand reduction. In Section AI.7 we discuss potential moral hazard and “gaming” of the baseline;
the methods we have used to calculate demand reduction are robust to this potential “gaming”, although most consumers would not gain
economically from trying to game the baseline, and we find no widespread evidence of gaming in the data. The design of this critical peak
pricing scheme is different from others, such as Fowlie et al. (2021), on a few dimensions: (i) we did not change customers’ off-peak price; (ii)
we did not increase customers’ peak price.

7For context, the marginal price per kWh for the typical Octopus smart meter customer was £0.34/kWh. The 2022-23 Saving Sessions
occurred during a time when electricity and gas prices were regulated by the UK Government’s Energy Price Guarantee (UK GOV, 2023b).

8Conducting a field experiment under such information saturation requires careful selection of counterfactual cases in view of credibly
identifying causal effects. This is because the pervasiveness of energy-conservation messaging could contaminate the control group or result
in violation of the stable unit treatment value assumption (SUTVA). Expected divergence between small-scale experiments and nationwide
campaigns also reflects findings from research on scaling and the external validity of experiments in fields beyond energy (Al-Ubaydli et al.,
2023, List, 2022).

9Customers could receive multiple opt-in notices across the same or different channel (e.g., email, “push” notification to one’s mobile
device such as a phone or tablet). However, the vast majority of Octopus Energy customers in the data we analyzed received one opt-in notice
via email or one email-based opt-in notice alongside one push-based opt-in notice.
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We used three sources of variation to construct comparisons between observed and counterfactual outcomes
for our response variables of interest — i.e., in-Session electricity consumption (kWh). We formally tested these
comparisons using three difference-in-differences (DiD) designs and data from all 13 Saving Sessions. First, the
manner in which Saving Sessions were delivered allowed us to contrast the behavior of ≈332k Octopus Energy
customerswho signed up before the first Saving Session onNovember 15, 2022 to≈654kOctopus Energy customers
who never signed up to take part in DFS events. Second, we compared the behavior of ≈332k Octopus Energy
customers who signed up before the first Saving Session to≈12k Octopus customers who signed up after the ninth
Saving Session on January 30, 2023.10 Third, owing to Octopus Energy’s December 2022 acquisition of the British
energy retailer Bulb Energy, we compared the behavior of ≈1.137m Octopus Energy customers invited to sign up to
DFS events to≈198k newly-acquired Bulb customers who would have been eligible for a sign-up invitation but who
were not invited due to Bulb not being a DFS provider and due to Bulb’s acquisition by Octopus taking place too
late in 2022 for Octopus to invite Bulb customers. Thus, Bulb customers provided us with a natural counterfactual
group.11 In summary, we used DiDs to make three comparisons: (a) Signed Up Early versus Never Signed Up;
(b) Signed Up Early versus Signed Up Late; and (c) Octopus Energy customers invited to sign up versus newly-
acquired smart-meter Bulb Energy customers not invited to do so.

In judging the validity of DiD in this situation, it is important to note that prior to receiving the invitation to sign
up to participate in Saving Sessions, Octopus Energy customers were unaware of the timing of Saving Sessions —
in terms of both on which days and at what times Saving Sessions would occur. This minimized the possibility of
selection bias around sign-up (e.g., customers who planned to use less electricity during events being more likely
to sign up). Indeed, in comparing trends in customers’ average consumption during the periods before the start of
the Saving Sessions campaign during the month of October and the first half of November, we observed parallel
trends for each pair of groups used for our three DiD designs.

Furthermore, we probed important parameters of the design of the provision of Saving Sessions with an eye to
how such design might be optimized by governments, grid operators such as NGESO, and retailers like Octopus
Energy. To do so, we focused on the behavior of Octopus Energy customers during two unique Saving Sessions —
on February 13, 2023 from 17:30 to 18:30, and on March 15, 2023 from 16:30 to 17:30. We do so as the customer-
messaging set-ups for these two Saving Sessions involved incentives and/or notice periods that differed in amanner
that allowed us to credibly establish causal effects in relation to the broad timing (i.e., When?) of Octopus Energy’s
appeals to its customers to flexibly use electricity and, for one of our secondary analyses, the general channel
through which these appeals were made (i.e., their “type”; e.g., email versus SMS). This timing parameter is
especially important to understand as grid operators can choose when to call for a demand response event. Our
analysis is, to the best of our knowledge, the first to analyze this timing parameter at a scale expected to have
enough statistical power to estimate hour-specific effects.

With regard to experimental design, opt-in notices were typically sent to Octopus Energy customers on the
day prior to a given Saving Session (hereafter, “day-ahead” notices). However, we used a regression discontinuity
design (RDD) to exploit a technical fault that resulted in both the delay and the time-ordered delivery of opt-in
notices for the February 13, 2023 Saving Session in a fashion broadly reflective of customers’ “tenure”withOctopus
Energy (i.e., the length of time a customer has used Octopus Energy as service provider). Practically speaking,
this allowed us to gauge the effect of receiving notice on the day of the Saving Session itself or, rather, under “short”
notice (hereafter, “day-of” or “intraday” notices) using data from ≈80-350k customers.

For the Saving Session on March 15, 2023, we instead leveraged a field experiment. For this field experiment,

10We did not see meaningful differences in treatment effects under different definitions of late joining (see Section AT.4 for a comparison of
results using our primary model specification and an alternative).

11Merger and acquisition designs using consumer data are an underutilized means of obtaining counterfactual cases as accessing consumer
data has historically been difficult. For excellent examples of this analytic strategy, see Farronato et al. (2023), Li and Agarwal (2017), Yan et al.
(2021).
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we created exogenous variation in the broad time and general type of supplementary opt-in notice that were given
alongside a universal, primary day-of notice to ≈650k DFS-participating Octopus Energy customers on the morn-
ing ofMarch 15, 2023. In particular, we sent a randomly selected group of customers an ancillary “heads-up” email
stating that there “may be a Saving Session tomorrow evening”. Furthermore, we sent a second, randomly selected
group of customers a day-of “reminder” SMS textmessagewhile simultaneouslymaking this second group eligible
for a bonus price incentive of £1.25.

Across our three experimental designs, we obtained results of substantial scientific and policy relevance. In
particular, we showed, using our DiD design involving newly acquired Bulb customers, that merely being invited to
sign up to DFS events caused a ≈10% reduction in consumption during the half-hours of the 13 Saving Sessions.
This effect is a kind of intent-to-treat effect (ITT) interpretable as the average change in consumption amongst
smart-meter customers during DFS events when their energy supplier (here, Octopus Energy) participates in the
DFS. With regard to the impact of taking part in DFS events, our DiD designs indicated that signing-up to Saving
Sessions caused ≈24-27% lower consumption during Saving Session half-hours. Further still, our DiD designs in-
dicated that Session opt-in caused ≈38-44% lower consumption during Saving Session half-hours.12 We compared
our DiD-based results to estimates of reduced consumption obtained using NGESO’s preferred methodology for
assessing demand reduction — a kind of within-person pre-post comparison. We found that the official NGESO
methodology is too optimistic in that it overestimates demand reduction by ≈13%.

Beyond consumption, we obtained several noteworthy results related to the probability of Saving Session sign-
up and the probability of Session-specific participation—where these results pointed towhich customersmight be
targeted and how peak-pricing campaigns might be designed to maximize engagement.13 For instance, customers
who signed up to Saving Sessions were more likely to have smart tariffs (i.e., special energy products for customers
with low-carbon technologies like electric vehicles, batteries, and heat pumps) and to live in geographic areas
with lower levels of socio-economic deprivation. However, we found no evidence to suggest that probability of
sign-up is associated with home energy-efficiency rating, annual energy consumption, or UK region of residence.
Conditional on sign-up, we obtain similar results for Session opt-in, where Octopus Energy customers are more
likely to opt-in when they have a smart tariff and live in lower-deprivation areas.

Moreover, we found several corollary results with respect to treatment effect heterogeneity in relation to our
DiD designs. In general, we found that all customer sub-groups conserved energy during the Saving Sessions,
but customers from lower-deprivation areas, with higher annual consumption, and on smart tariffs all had greater
demand reduction. However, even the groups with lower treatment effects showed large, economically mean-
ingful effects of participating in Saving Sessions. For example, the Conditional Average Treatment Effect (CATE)
of signing up to Saving Sessions for customers in very low deprivation postcodes was -0.1059 kWh (-22.7% of
during-Session consumption of non-signed-up customers from very low deprivation postcodes), while the CATE
for customers in very high deprivation postcodes was -0.0644 kWh (-17.2% of during-Session consumption of non-
signed-up customers from very high deprivation postcodes). This difference was meaningful, but even the CATE
for very high deprivation postcodes was substantial. We also found suggestive evidence that the treatment effect
declines over the course of the DFS season. However, with only 13 Saving Sessions, this evidence should be treated

12In terms of behavioral mechanisms, we supplemented our causal analyses using data from surveys sent to 60,000 Octopus Energy cus-
tomers who had signed up to participate in DFS events (Section AI.2). We found that 70% of respondents adjusted their domestic energy
behavior by turning off lights, 57% adjusted their behavior by avoiding use of television, games consoles, and/or other entertainment appli-
ances, 50% shifted the time during which they use their dryer, washer-dryer, and/or washing machine, and 50% eschewed the charging of
small appliances. Only 9% of respondents said that they had already planned to be away from their home during Saving Sessions; these cus-
tomers would be considered inframarginal in our estimates (i.e., receiving compensation for demand reduction that the Saving Sessions did
not actually cause). Surveyed customers report high levels of satisfaction with Saving Sessions — including under tweaked designs involving
shorter notice periods or payments for using more electricity when the grid had excess supply. Furthermore, surveyed customers report a high
willingness to participate in future Saving Sessions. They also disclose that they engaged in an array of behaviors to manually deliver flexibility.

13We viewed both forms of participation as indicators of customers’ willingness to engage in electricity-conserving behaviors within their
home.
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with caution.
Our RDD and our field experiment provided evidence to suggest that longer notice period causes greater de-

mand reduction during Saving Sessions. Specifically, our RDD indicated that being sent an intraday notice as
opposed to day-ahead notice (i.e., having shorter notice) increased in-Session consumption by 10.6% or, when
adjusting for pre-treatment covariates, 7.1%. Likewise, our field experiment indicated that receiving an earlier,
ancillary “heads-up” email (i.e., having advanced notice) reduced in-Session consumption by 3.2% or, when ad-
justing for pre-treatment covariates, 1.6%. The result from our RDD is equivalent to≈25% of the demand reduction
our DiDs identify for the 10th Saving Session, depending on the model specification. The result from our field ex-
periment was equivalent to ≈7% of the demand reduction our DiDs identify for the 12th Saving Session. Thus,
we found that a shorter notice period dampened customers’ demand response, though that response was still
substantial.

Further still, we used a variant of our RDD to estimate treatment effects that were specific to each of the five
hours (08:00 to 13:00) during which intraday notices for the 10th Saving Session were sent. We found that every
hour closer to the start of the 10th Saving Session (17:30) that notice was given, in-Session demand reduction was
lower by ≈10%, suggesting a notice period elasticity of demand of -0.7 to -0.8 (i.e., every 1% increase in wait time
of the peak-period notice to customers, the conservation effect size in the peak period decreases by 0.7 to 0.8%).
Our paper is, to the best of our knowledge, the first to estimate such an elasticity for any energy market.

Evidence around Session participation and notice timing from our RDD was somewhat mixed, although we
did find that longer notice period increases the probability of opting into the 10th Saving Session, conditional on
pre-treatment variables. Furthermore, our field experiment indicated that being sent a supplementary “heads-
up” email the day prior or a day-of “reminder” SMS text message respectively increased the probability of Session
participation by ≈6% and ≈23% over baseline — where we observe an increase of ≈5.2% in the probability of
Session participation when considering mere eligibility for the SMS-based treatment.

Given thatwe estimated changes in energy demand and the cost of a policy designed to shape demand response
(i.e, the DFS), we also derived associated impacts on societal well-being. In particular, our economic welfare anal-
ysis indicated that the DFS was welfare-enhancing when considering the payments fromNGESO as a pure benefit
to Octopus Energy and its customers. If only considering the reduction in greenhouse gas emissions caused by the
displacement of the most expensive (and thus likely marginal) generation on the grid during the Saving Sessions
half hours, themarginal value of public funds (MVPF) (Hendren and Sprung-Keyser, 2020) of the Saving Sessions
component of the broader DFS program was 1.05. The MVPF was substantially higher (2.63) if one assumes that
the demand reduction we identify should be valued according to these environmental benefits and at the value
that the UK Government ascribes to lost load.14 In summary, the welfare impacts were sensitive to the extent to
which the demand response reduced the likelihood of lost load; note that an MVPF of 2.6 is larger than many
other popular policy programs, such as housing vouchers, job training, cash transfers, and adult health subsidies
(Hendren and Sprung-Keyser, 2020).

From the perspective of energy grid management, our analyses point to a tension between the size and value
of flexibility, at least for domestic consumers. Grid operators such as NGESO likely find it more difficult to forecast
lost load for periods further in the future. If it is correct that lost load becomes more certain when the hour in
question approaches, results from our RDD and field experiment suggest a potential trade-off. If the notice period
given to customers is shorter, the flexibility is more valuable to NGESO and similar grid operators. However, our
RDD and field experiment results showed that domestic customers’ demand reduction was smaller, though still
substantial, when the notice they received was closer to the time of flexibility “delivery”.

The paper proceeds as follows. First, we summarize the creation of the DFS by NGESO in Great Britain, includ-
14The value of lost load is an economic concept that is meant to reflect the full consumer surplus loss from not having energy in the home

(Gorman, 2022).
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ing themethodologyNGESOprescribes forDFSproviders to use to calculate demand reduction and our alternative
methodology to measured demand reduction — i.e., difference-in-differences (Section 2). We follow immediately
with results obtainedwhen using these twomethods to estimate demand reduction (Section 3). We then provide a
similarly-structured presentation of methods and results for our RDD and our field experiment (Section 4). Next,
we explore themacro-level welfare implications of the 13 Saving Sessions (Section 5). We conclude by outlining the
implications of our findings for policymakers and for future research in relation to the limitations of our analysis
(Section 6).

2 Background

2.1 Great Britain’s Electricity Market

Great Britain’s electricity system consists of three interconnected components: (a) electricity generation; (b) high-
voltage transmission and low-voltage distribution; and (c) consumption by end-users (National Grid, 2023f). At
present, the regulatory framework for Great Britain’s electricity system involves wholesale markets operating at
the national level, encompassing the entirety of England, Scotland, and Wales, rather than exhibiting regional or
nodal variations.15 Zonal considerations, such as constraints on electricity transmission between different regions,
are managed by NGESO and are thus beyond the reach of wholesale market dynamics. Indeed, many of the
balancing services offered by NGESO involve the management of constrained electricity transmission between
different geographic areas. Nevertheless, in the future, Great Britain’s energy system could see zonal or nodal
pricing (Ofgem, 2022b).

Historically, electricity generation in Great Britain mostly relied on fossil fuels, particularly coal and gas. Power
plants utilizing these sources of energy possess a “flexible” characteristic, enabling rapid adjustments in output to
accommodate fluctuations in demand. As renewable generation capacity has expanded, there has been a grow-
ing tendency to draw on the flexibility of gas power plants to balance supply and demand during periods when
renewable generation falls short.

Electricity wholesale prices in Great Britain are determined by energy generators’merit order (Institute for gov-
ernment, 2022). This approach arranges generation units in ascending order based on their cost — ranging from
the least expensive to the most expensive. In the merit order, the most expensive power plant required to meet
demand sets the price for electricity. Interestingly, because power generators have some awareness of the market
status, they tend to submit bids close to the marginal cost associated with the most expensive plant that ultimately
defines the price in themerit order (Grubb et al., 2022, Zakeri et al., 2022), reminiscent of strategic bidding behavior
by the dominant electricity generators in England and Wales in the early 1990s (Wolak and Patrick, 2001). Due to
the higher operational costs of coal and gas plants, generators of this type frequently emerge as the marginal fuel
in Great Britain’s merit order. Thus, despite gas generators contributing only around 40% of Great Britain’s total
energy, gas prices have determined electricity prices about 84% of the time (Grubb et al., 2022).

This dynamic underscores the significance of gas power plants in shaping electricity prices within the whole-
sale market. Nevertheless, as renewable energy sources continue to make up a larger portion of the energy mix in
Great Britain, as in many other countries, the task of balancing energy supply and demand will become increas-
ingly complex.16 This presents intriguing economic considerations, where the present research focuses on optimal
policies for facilitating flexible energy demand in relation to a peak-pricing campaign.

15Northern Ireland is independent in terms of its electricity system. The island of Ireland, comprising both the Republic of Ireland and
Northern Ireland, maintains an integrated electricity system under the direction of the transmission systems operator EirGrid that is separate
from NGESO. Ireland and Great Britain’s grids are joined by way of Wales via the Moyle and East–West Interconnectors.

16This complexity might also impact on the market power of fossil-fuel plants in the evening and thus complicate the welfare analysis - see
Jha and Leslie (2021).
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2.2 The Demand Flexibility Service (DFS)

NGESO launched the DFS inNovember of 2022 to gauge the feasibility of strategically shifting household and busi-
ness consumption during times of high demand and low supply. The ultimate aim of the DFS was to mitigate the
risk of lost load (e.g., brownouts or blackouts) and the need to use carbon-intensive methods of power generation
(e.g., gas and backup coal) to avoid electricity shortfalls. Participation in the DFS was open to all households and
businesses in Great Britain that had a smart meter providing reliable readings and had a relationship with a DFS
provider. DFS providers included not only traditional energy suppliers likeOctopus Energy but also asset aggrega-
tors and other firms with the capability to monitor andmanage consumption (e.g., Loop, a smart-meter-connected
energy-saving advice application).

The DFS was, in some respects, a blunt policy tool to encourage national demand response in the face of grid
constraints. In the future, we expect consumer flexibility to be more dynamic, automated and routine, through
low-carbon technologies optimizing demand in an increasingly digitized grid. British energy retailers do not yet
settle their procurement at the half-hourly level for individual customers - most consumers continue to be settled
on a ‘non-half-hourly’ basis using daily reads or usage estimates. And half-hourly wholesale prices are determined
at national-level, as discussed in Section 2.1. For these reasons, retailers do not face a direct incentive to encourage
their own customers to reduce electricity demand in half-hours and locations when and where it is scarce. Ofgem
aims to implement market-wide half hourly settlement by the end of 2026 (Ofgem, 2023a), while the government’s
Review of Electricity Market Arrangements is considering options to introduce sharper locational signals into the
wholesale market. Such reforms would help electricity market price signals to reflect grid optimization needs,
and these price signals would likely encourage efficient and innovative arrangements by retailers to encourage
demand-response among their customers (Wolak, 2019). British energy retailersmight even develop programs like
“Saving Sessions” on their own, alongside dynamic tariffs and other demand response tools, to reduce electricity
procurement costs in the most constrained half-hours and locations. As Great Britain transitions to this more
flexible and dynamic system, the DFS might be viewed as a limited policy response in the interim to help scale
demand response and as a grid management contingency.

Consumer participation in the DFS occurred in two stages: (a) one-time sign-up to take part in the DFS itself;
and (b) repeated, event-specific opt-in. NGESO mandated this two-stage process. After they signed up or opted
in, participants were not penalized for failing to reduce demand, or even having negative demand reduction (i.e.,
actual consumption higher than baseline). Even though theDFSwas free for consumers, opt-in rateswere not 100%
— participation rates range from 42-69% among consumers who had signed up for Saving Sessions (Table 1). We
further discuss sign-up and opt-in in Section AI.1.
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Table 1: Summary of times, incentives, sign-ups and opt-ins for each Saving Session.

Session date Session
Type

Session
Start

Session
End

Incentive
(£/kWh)

Signed Up by Ses-
sion Start

Opted In to
Session

% of Signed-up
that Opted In

November 15, 2022 Test 17:00 18:00 2.25 408,925 281,952 68.9
November 22, 2022 Test 17:30 18:30 2.25 427,114 267,514 62.6
November 30, 2022 Test 17:30 18:30 2.25 445,695 273,988 61.5
December 1, 2022 Test 17:00 18:00 2.25 449,167 269,339 60.0
December 12, 2022 Test 17:00 19:00 2.25 468,379 306,869 65.5
January 19, 2023 Test 9:00 10:00 2.25 517,910 286,337 55.3
January 23, 2023 Live 17:00 18:00 3.38 605,223 358,323 59.2
January 24, 2023 Live 16:30 18:00 4.00 615,061 343,458 55.8
January 30, 2023 Test 9:00 10:00 2.25 627,269 314,494 50.1
February 13, 2023 Test 17:30 18:30 2.25 640,892 354,682 55.3
February 21, 2023 Test 17:30 18:30 2.25 658,283 395,946 60.1
March 15, 2023 Test 18:30 19:30 2.25 684,534 289,490 42.3
March 23, 2023 Test 18:30 19:30 2.25 692,534 382,857 55.3

Note: Dates of the 13 DFS events delivered by Octopus Energy throughout Winter 2022-23. Price incentives for Octopus Energy customers
were administered via a points-based rewards scheme (i.e., “OctoPoints”), which could be exchanged for cash or account credit. Summary of
information for each Saving Session includes each event’s: date, time, calculated monetary incentive per kWh of demand reduction, number
of customers who signed up for Saving Sessions by the date of the Saving Session, number of customers who opted in to the Session, and the
percentage of signed up customers who had opted in.

NGESO organized a total of 22 DFS events between November 2022 and March 2023, each with a duration of
one, one and a half, or two hours. Events were divided into two categories — i.e., “test” events and “live” events.
DFS providers were required to first deliver two test events (National Grid, 2023b).17 There were only two live
events across the Winter 2022-23 period, and they occurred on January 23 and 24, 2023.

During test events, NGESO established a Guaranteed Acceptance Price of £3,000/MWh for all bids submitted
by DFS providers to provide demand reduction. This minimum price was intended to offer assurance to DFS
providers in the market (National Grid, 2022b). Providers had the option to submit bids below the Guaranteed
Acceptance Price, which could be accepted at the reduced price. Alternatively, they could present bids above this
price, but theywould face the risk of their bids not being accepted if themarginal price in the BalancingMechanism
(the main market used by NGESO for balancing services) turned out to be lower than their bid (Ofgem, 2022a).

For live DFS events, the dynamics were distinct. NGESO designed live events to be initiated only after all other
grid balancing services and market mechanisms had been exhausted for the relevant time periods. During live
events, DFS providers participated in an auction-style mechanism where they submitted bids to reduce as much
electricity demand as possible from their consumer base. Unlike the test events where the Guaranteed Acceptance
Price set a price floor, but bids higher than the prevailing Balancing Mechanism price could be rejected, in live
events DFS providers did not compete with the Balancing Mechanism and tended to present higher-priced bids.
NGESO took this approach to live events to incentivize DFS providers to offermore substantial demand reductions
during times when grid balancing was especially challenging, reflecting the unique circumstances of live events.

For the two live events on January 23 and 24, 2023, DFS providers submitted a range of bids at prices exceeding
the Guaranteed Acceptance Price. While the precise accepted bid prices were not disclosed publicly, information
from reporting by NGESO indicates that submitted offers fell within a range of £4,400/MWh and £6,500/MWh
(LCP Delta, 2023).

17In general, only two test events took place each month. However, Octopus Energy delivered three DFS events in November 2022. This is
because each DFS provider’s initial two compulsory events did not count against their two monthly test events (National Grid, 2023i).
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2.3 Design of Treatment: Saving Sessions

Each DFS provider delivered their own variant of the Demand Flexibility Service, often in a special campaign.
Octopus Energy branded its DFS implementation “Saving Sessions”.

To market Saving Sessions, Octopus Energy created a dedicated web page where its customers could agree
to participate in the DFS (i.e., one-time “sign-up”). Octopus Energy invited 1,384,400 customers to sign up (see
FigureAF.11). Some customerswhowere eligible to sign up, such as thosewith open complaints, were not emailed.
Among the invited customers, 375,026 signedup before the first Session, 163,502 signedup between the first Session
and the end of January, and 15,643 signed up between the start of February and the final Saving Session; 830,229
did not sign up. In addition, therewere 138,363 customerswho signed upwhowere not explicitly invited to sign up
– for example, because they had an open complaint at the time of the invitations being sent out, or joined Octopus
Energy after the invitations had been sent. Thus a majority of invited customers signed up before the first Session
on November 15, 2022, after Octopus Energy sent the first sign-up invitation email (Figure 1a).

Figure 1: Saving Session sign up email sent before November 2022 and example email-based opt-in notice sent
for the November 30 Saving Session alongside the remind email sent on the day of the event.

(a) Saving Sessions sign up email. (b) Initial Opt-in Notice. (c) Saving Session Reminder.

Note: In late October 2022, Octopus Energy sent an invitation email to 1.3m customers inviting them to participate in Saving Sessions. This
email (left): (a) stated one’s potential cash savings (i.e., “up to £100”); (b) noted that there would be a minimum of 12 Sessions over the
campaign; and (c) discussed “OctoPoints”, a synthetic currency used by Octopus Energy to reward customers for reducing their demand
during Sessions. Opt-in email notices were typically sent to customers the day before (center) and reminder emails during the day of (right) a
Saving Session. These sample emails were sent for the sessions that took place on November 30 2022, which occurred between 5:30 pm to 6:30
pm. Each kWh of demand reduction was rewarded with 1800 OctoPoints, equivalent to £2.25 per kWh.

To secure agreement to participate in each Saving Session (i.e., event-specific “opt-in”; Figure 1b), Octopus
Energy sent emails to customers who had signed up for its DFS events. Signed-up customers with the Octopus
Energy mobile application also received opt-in notice in the form of push notification. Opt-in notices (i.e., email
and push) were normally sent the day before a Session (i.e., day-ahead notice). However, recall that we also
consider two interesting deviations from to this typical messaging set-up wherein customers: (a) received day-of
opt-in notice (Section 4.1); or (b) received supplementary opt-in notice (Section 4.4). Regardless of set-up, on the
day of each Saving Session, a few hours before the start of the event, Octopus Energy sent customerswho had opted
in an email-based reminder (Figure 1c). For each Saving Session, customers who had opted in were remunerated
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with “OctoPoints” after each Session.18

Figure 2: Extra Email-based Notices for the Saving Sessions on 23 and 24 January, 2023.

(a) Extra Notice for January 23. (b) Extra Notice for January 24.

Note: Additional opt-in email notices sent to customers for the live DFS events which took place on January 23 and January 24, 2023. These
sessions had a different remuneration per kWh of demand reduction — 2,700 OctoPoints in the former and 3,200 in the latter, equivalent to
£3.375 and £4 per kWh respectively.

Communication with signed up customers worked differently for the two “live” Saving Sessions. Specifically,
additional information was given to customers for the live events — where the email-based notices explained that
the Saving Sessions on January 23 and 24 were especially important in terms of alleviating the need for Great
Britain’s national grid to harness electricity from coal and gas-based power stations. In addition to the higher-
context environmental appeal (Bergquist et al., 2023), the two live Sessions featured higher remuneration. Specif-
ically, the January 23 Session awarded customers 2,700 OctoPoints per kWh of demand reduction (£3.375/kWh)
and the January 24 Session awarded customers 3,200 OctoPoints per kWh (£4/kWh).

2.4 Calculating Demand Reduction During the Demand Flexibility Service

2.4.1 NGESO’s Prescribed Approach

Under the potential outcomes framework, a causal estimate of demand reduction is the difference between a cus-
tomer’s actual consumption during a given Saving Session and the consumption that would have occurred had this

18OctoPoints could be used to reduce one’s energy bill, donated to charities, or exchanged for cash. Customers were rewarded with Octo-
Points in proportion to their clipped (i.e., zero-truncated) demand reduction. Briefly, each OctoPoint was worth £0.00125 — this is 1/800 of £1
— where the value of 800 was chosen as the divisor as octopuses have eight legs. For each kWh of clipped demand reduction in test sessions,
customers received 1800 OctoPoints — where 1800 OctoPoints/kWh is equivalent to £2.25/kWh. In Section 2.4.1, we further discuss clipping
and how DFS providers calculated demand reduction.
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customer not signed up and not opted in to the event. However, we can only ever observe a customer’s actual
consumption. Thus, one must estimate their counterfactual consumption.19

NGESO asked DFS providers to use a specific methodology to calculate each customer’s counterfactual con-
sumption, referred to as a customer’s “baseline”. When using NGESO’s formula, DFS providers calculate demand
reduction by subtracting a customer’s “actual” (i.e., in-Session) consumption from their NGESO-methdology-
derived “baseline” consumption. Thus, for a given customer i, a specific DFS event h and a given half-hour during
this event t:

Demand Reductioniht = ConsumptionBaseline (NGESO Methodology)iht
− ConsumptionActualiht

, (1)

where positive values indicate that, compared to their baseline, a customer used less electricity during a given
portion of an energy-savings event.

Per NGESO guidance, customer baselines were estimated in accordance with Balancing and Settlement Code
(BSC) P376, a legal framework governing how DFS providers ought to derive baseline consumption (Elexon BSC,
2023). Specifically, for each half-hour of a DFS event, a DFS provider was to calculate baseline consumption and
demand reduction using the following three steps:

1. Calculate “unadjusted” baseline consumption by taking the unweighted average of consumption during the
same half-hour of the day for the ten most recent weekdays.20

2. For each half-hour of a DFS event, subtract a customer’s actual, in-event consumption from their baseline
consumption earlier on the same day and then add this day-of difference to the “unadjusted” baseline to create
an “adjusted” baseline consumption. For example, if the unadjusted baseline for a half-hour during a DFS
event had been 0.4 kWh, an adjustment of 0.25 kWhwould lead to an adjusted baseline during that half-hour
of 0.65 kWh; whereas an adjustment of -0.25 kWh would lead to an adjusted baseline during that half-hour
of 0.15 kWh.21

3. “Clip” demand reduction — i.e., code half-hours with negative demand reduction, that is when actual con-
sumptionwas higher than “adjusted” baseline consumption (Equation (1)), as 0 kWhof demand reduction.22

DFS providerswere not required to structure their remuneration of customers in the samemanner. Indeed, they
could have chosen any payment structure, such as an equal dividend to all DFS-participating customers based on
average demand reduction. However, none did. Instead, all DFS providers structured customer payments as per-
kWh demand reduction, echoing the payment structure they themselves received from NGESO. Furthermore, to

19Potential outcomes are simply one’s value for the response variable when simultaneously exposed to different experimental conditions.
For a given individual i, their potential outcome under treatment (y1i ) and their potential outcome under no treatment (y0i ) cannot both be
observed resulting in the “fundamental problem of causal inference”. For instance, in a study of the effect of caffeine on hours of sleep, an
individual i cannot receive and, at exactly the same point in time, not receive a cup of coffee prior to bedtime (Gelman et al. (2020, ch. 18)).

20These weekday days must all fall within the last 60 days. If, for reasons such as faulty meter readings, there are no valid readings for any
run of ten weekday days within the last 60 days, a DFS provider may use fewer working days to calculate the unadjusted baseline. However,
DFS providers were instructed to exclude a customer entirely if they have fewer than five weekdays with valid readings in the last 60 days.

21Where the adjustment is negative and its absolute value is greater than the unadjusted baseline (e.g, an adjustment of -0.5 kWh against
an unadjusted baseline of 0.4 kWh), the adjusted baseline is coded as 0 kWh rather than -0.1 kWh in order to avoid negative baselines which
would be nonsensical. During half-hours with a 0 kWh baseline, demand reduction is not possible.

22For example, if a customer’s “adjusted” baseline was 0.5 kWh, and their actual consumption was 0.8 kWh, their unclipped reduction
would be -0.3 kWh. Clipping would transform this negative demand reduction into 0 kWh. Put formally, clipped demand reduction is, per
Code P376, intentionally censored at the value of zero. Clipping is applied to each half-hour individually. Thus, if a customer’s unclipped
demand reduction was negative (e.g., -0.3 kWh) for the first half-hour of a 60-minute event, but positive (e.g., 0.2 kWh) for the second half-
hour, half-hour-specific clipping would result in a total “clipped” demand reduction for the entire DFS event of 0.2 kWh.
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calculate customer-level demand reduction, DFS providers all adopted the same formula NGESO used to calculate
portfolio-level demand reduction.23

The rationale behind NGESO’s day-of adjustment (Step 2, above) was to give customers credit for days where
energy consumptionwas structurally higher than the unadjusted baselinewould suggest (e.g., due to coldweather)
and to adjust downward when energy consumption was structurally lower than the unadjusted baseline would
suggest (e.g., due to warm weather; (National Grid, 2023e)). However, anecdotal reports of customers increasing
their consumption as much as possible during the adjustment period in order to inflate their adjusted baseline
became somewhat controversial during the DFS (Grimwood, 2023, National Grid, 2023k). NGESO has arranged
for the Winter 2023-24 DFS baselining formula to not involve a day-of adjustment (National Grid, 2023c).

The rationale behind NGESO asking DFS providers to clip half-hourly demand reduction to a minimum value
of zero (Step 3, above) was to avoid penalizing customers. Specifically, it was feared that penalties for negative
demand reduction (i.e., when in-Session consumption was greater than adjusted baseline consumption) could
harm consumers or cause risk-averse customers to decide not to participate in the DFS. Note that we observe
large differences in demand reduction when using “clipped” versus “unclipped” measures. On average, across
the 13 Saving Sessions delivered by Octopus Energy, clipped demand reduction among signed up customers was
more than twice as high as unclipped demand reduction Figure AF.4, though the bias is smaller when the sample
includes only customers who had signed up and opted in.

2.4.2 Methodology for Obtaining Our Counterfactual for the DFS and Estimation of Related Causal Effects

To estimate the causal impact of the DFS, we used difference-in-differences (DiD) to make three comparisons of
special groups of customers:

• Comparison 1: A treatment group comprised of Octopus Energy customers who signed up to take part in
DFS events before the first Saving Session on November 15, 2022 versus a counterfactual group comprised of
Octopus Energy customers who never signed up to take part in DFS events (hereafter, Signed Up Early versus
Never Signed Up).

• Comparison 2: A treatment group comprised of Octopus Energy customers who signed up to take part in
DFS events before the first Saving Session versus a counterfactual group comprised of Octopus customers
who signed up after the ninth Saving Session on January 30, 2023 (hereafter, Signed Up Early versus Signed
Up Late; a robustness check for Comparison 1).

• Comparison 3: A treatment group comprised of Octopus Energy customers invited to sign up to take part in
DFS events versus a counterfactual group comprised of newly-acquired smart-meter Bulb Energy customers
who were unable to be invited to sign up (hereafter, Octopus Customers versus Bulb Customers).

We used our first two DiD strategies to examine the impact of signing-up to Saving Sessions on energy con-
sumption during Saving Sessions, taking the difference between customers’ in-Session consumption and their pre-
treatment consumption before the first Saving Session. These two DiD strategies result in a causal estimand that
is akin to an Intent-to-treat (ITT) effect. Put alternatively, we view actually opting into a Saving Session as our
“treatment”; however, this treatment involves non-compliance because not all signed-up customers formally opt in
to participate in one or more specific Saving Sessions(see Gelman et al. (2020, Ch. 21)). In this respect, signing up
to Saving Sessions functions as a kind of “encouragment”. And those who signed-up to Saving Sessions aremerely
eligible for treatment — where the ITT effect represents the demand reduction stemming from one’s eligibility to

23We discuss potential moral hazard and “gaming” by customers of NGESO’s methodology in Section AI.7. We find that the baseline
calculation is somewhat immune to this potential “gaming”, and we do not find evidence of widespread “gaming” in the data.
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opt into one or more the energy-saving events. We also estimated the local average treatment effect (LATE) using
our first two DiD strategies by instrumenting the multiplicative interaction between sign-up and Saving Session
opt-in.24. In contrast to the ITT, this allowed us to gauge the causal impact of actually participating in a Saving Ses-
sion on in-Session consumption among those Octopus customers whose opt-in-related behavior could have been
altered by signing up to DFS events (cf. customers who signed up but who did not opt into a particular Saving
Session).

Our thirdDiD strategy, a kind of natural experiment, was used to estimate an ITT effect summarizing the change
in consumption stemming from eligibility to take part in the DFS itself. Specifically, we compared all Octopus
Energy customers invited to take part in DFS events to all Bulb Energy customers who had a smart-meter and who
would have been eligible to be invited to participate in DFS events had they been acquired by Octopus earlier in
2022.25 This comparison is of substantial policy-relevance as Octopus Energy implemented a variant of the DFS
(i.e., the 13 Saving Sessions) whereas Bulb Energy did not. Thus, our comparison of all invite-eligible customers between
the two suppliers clarifies the impact of supplier participation in the DFS— recalling that NGESO recruited suppliers as
opposed to individual households.26

“Treatment” for our third DiD strategy (i.e., actually opting into one or more specific Saving Sessions) involves
two layers of non-compliance as: (a) not all Octopus customers encouraged to sign up to take part in DFS events via
the aforementioned invitation will do so; and, as with our first two DiD designs, (b) not all customers signed up
to DFS events (another form of encouragement) will opt in to participate in one or more Saving Sessions. Thus we
also estimated two LATEs. First, we instrumented supplier “assignment” (i.e., whether a customer used Octopus
as a service provider or Bulb as a service provider) to estimate the impact of signing up to take part in DFS events
on in-Session consumption. Second, we again instrumented the supplier “assignment” to find the impact of opting
in to participate in specific Saving Sessions on in-Session consumption.

Construction of Comparison Groups and the Handling of Staggering. For each of our three DiD designs, we
constructed the comparison groups such that there is no “staggered” roll-out of the intervention. In doing so, we
avoided problems highlighted by Baker et al. (2022) and Goodman-Bacon (2021) with traditional DiD designs
concerning treatments that are not uniformly given across the study population.

The sample for our first DiD design consisted of most of the 1,384,400 customers who were sent emails inviting
them to sign up to Saving Sessions (Figure AF.12). In total, 342,906 of these customers signed up “early”, i.e.,
before the first Saving Session on November 15, 2022, versus 689,708 invited customers who never signed up,

24Formally, and following Gelman et al. (2020), the LATEs we estimate using our DiD designs are most appropriately labelled Compiler
Average Causal Effects (CACEs). We use the more general “LATE” terminology here whereas we use the more specific “CACE” terminology
below to draw a distinction between our field trial, which is analyzed through the lens of a randomised encouragement design, and our
regression discontinuity design — the latter of which yields an estimand that is also a LATE.

25By “eligible”, we mean Bulb customers who had a smart meter and who had not disallowed their supplier from using their smart meter
to measure half-hourly consumption. Note that the majority of Octopus Energy customers with smart meters allow Octopus Energy to collect
half-hourly consumption data.

26We stress that Bulb Energy and Octopus Energy had important similarities. Both began growing in terms of their share of the domestic
energy supply market in 2018. Both provided customers a competitive “standard” tariff, avoiding situations where customers who finished
fixed-price contracts would be moved onto a less competitive “standard” tariff — a practice known as “tease and squeeze” across the British
energy sector. Both obtainedmost of their new customers through price comparison websites, while also utilizing very similar referral schemes
wherein referrers earned £50 credit for securing a new customer and referees earned £50 credit for being referred. And both made all of their
electricity tariffs “100% renewable” by default —where, in Great Britain, electricity suppliers can claim that a tariff is “100% renewable” if they
procure sufficient Renewable Energy Guarantees of Origin to cover their customers’ annual consumption (Ofgem, 2023b). For these reasons,
Bulb customers are an unusually suitable comparison group for Octopus customers. And, normally, it would have been impossible to compare
individual-level data from two suppliers in this manner. However, Octopus Energy’s acquisition of Bulb Energy in December 2022 enabled this
rare opportunity. As mentioned in the introduction, Octopus’ acquisition of Bulb was just late enough to ensure that Bulb customers were not,
for the most part, invited to Saving Sessions. Indeed, only 553 Bulb customers were invited. Some 22,000 who were not invited did sign up for
Saving Sessions, and we regard this small minority of Bulb sign-ups as being akin to “always-takers” in our analyses.
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where the remaining customers signed up at various points throughout winter 2022/23. After exclusions, our
sample consisted of 332,195 customers who signed up “early” and 654,062 who never signed up. We excluded
from our analysis: (a) customers moving home or changing supplier between September 1, 2022 and March 31,
2023; (b) non-domestic customers; and (c) customers with missing or insufficient consumption data.27

The sample for our second DiD design (Figure AF.13) consisted of 331,992 customers who signed up “early”,
i.e., before November 15, 2022,28 and 12,438 customers who signed up “late”, i.e., between February 1, 2023 and
the final Saving Session on March 23, 2023.

For our third DiD design, we used a sample of ≈1.1m Octopus customers (Figure AF.14): (a) who were sent
emails by Octopus Energy requesting that they sign up for Saving Sessions; (b) had sufficient consumption data;
and (c) were not excluded due to moving out of their home at some point during the winter 2022/23 Saving
Sessions period, being a non-domestic customer, or switching to a different supplier during the winter 2022/23
period. Our Bulb Energy sample consisted of 197,307 smart-meter customers with sufficient consumption data.
Note that we excluded a large number of Bulb Energy customers from our analysis due to missing smart-meter
data. This missingness was the result of issues around database migration during Octopus’ acquisition of Bulb.
And these issues ultimately prevented us from being able to analyze the full set of Bulb smart-meter customers. In
total, we dropped from our analysis 295,770 of Bulb’s 493,077 smart-meter customers.29

Common ITT Effect for All 13 Saving Sessions. We obtained the ITT effect for all three of our difference-in-
difference designs by following the recommendation of Bertrand et al. (2004) to collapse time series data into
just two observations, on for each of two periods of study — that is, one pre-treatment (i.e., “baseline”) period
observation and one post-treatment period observation. Put alternatively, we fit models to a dataset composed of
customer-period observations t, where each customer has just two observations such that t ∈ {1, 2}.30

To do this, for each customer, we simply averaged their half-hourly consumption (in kWh) across special half-
hours during the pre-treatment period and during the post-treatment period.

To clarify, the pre-treatment period (t = 1) was constructed using all half-hours from 09:00 to 22:00, inclusive,
Monday to Friday from October 1, 2022 to November 14, 2022.31 We took this approach to ensure that our pre-
treatment period reflected consumption during half-hours that were qualitatively similar to those during which
the 13 Saving Sessions took place (Table 1) — where Sessions only occurred on weekdays and never occurred
overnight. For each customer in our sample, we constructed their pre-treatment period observation using only
data on consumption from October 1, 2022 to November 14, 2022 and eschewed using data further back in time
(e.g., August and September) to avoid temporal inconsistencies. In particular, we wanted to avoid using data from
months wherein the weather and the daylight hours were especially different from the weather and daylight hours
duringwhich Saving Sessions occurred (i.e, November 15, 2022 throughMarch 23, 2023). Notewell that our results
are not sensitive to how we constructed the pre-treatment period (Section AI.5).

27We classified customers as having “missing” consumption data if they had no consumption data for the entire period of October 1, 2022
to November 14, 2022 which we used as a “pre-treatment” (discussed below) period or if they had no consumption data for the days of the
13 Saving Sessions (i.e., the “post-treatment” period). We classified customers as having “insufficient” consumption data if their consumption
was measured for one of these periods but not both.

28The sample was slightly smaller in this DiD than in our first DiD because there were fewer Saving Sessions in the post-treatment period,
which meant there were slightly more customers excluded for having insufficient consumption data in that period.

29As mentioned above, there were 531 Bulb customers who migrated to Octopus early enough to receive DFS invite emails along with
Octopus Energy customers. For the purposes of our analysis, We classified these individuals as “regular” Octopus Energy customers in our
first twoDiDs. But, given their unusual categorization as “like” Bulb and “like” Octopus customers, we excluded them from our Octopus versus
Bulb DiD.

30This approach, which minimizes the number of customer-period observations that we used to fit our regression models, also allowed us
to avoid excessive computational burden given the very large sample sizes involved in our analysis.

31In October, British customers were on British Summer Time. This means that the October half-hours are from 09:00 to 22:00 BST. Clocks
in Great Britain “fell back” to Greenwich Mean Time on October 30, 2022.

15



Figure 3: Parallel trends in average half-hourly electricity consumption (kWh) 09:00 to 22:00 from October 1,
2022, through November 14, 2022.

(a) DiD 1: Signed Up Early vs. Never Signed Up (b) DiD 2: Signed Up Early vs. Signed Up Late

(c) DiD 3: Octopus Energy customers vs. Newly-Acquired Bulb Customers.

Note: Average half hourly consumption from 09:00 to 22:00, each day fromOctober 1, 2022, through November 14, 2022. In the first two panels,
Octopus Energy customers that signed up to take part in DFS events before November 15, 2022 (Red lines) are compared to customers who
never signed up DFS events (Panel (a); Blue line) or to customers who signed up for DFS events on or after February 1, 2023 (Panel (b); Blue
Line). In Panel (c), consumption among Octopus Energy customers who were invited to participate in DFS events (Blue line) are compared to
Bulb customers with smart meters (Red line) over the same time period. In all three charts, peaks generally represent daytime consumption
on Sundays, which, for domestic customers, tends to be higher than on other days.

The post-treatment period (t = 2) was constructed using only the half-hours during which each Saving Session
occurred after Saving Sessions began onNovember 15, 2022. Similarly to our construction of the observation for the
pre-treatment period, we created the observation for the post-treatment period by averaging, for each customer,
their half-hourly consumption during Saving Sessions (Table 1). Recall that Saving Sessions varied in length.
Typically, however, Sessions lasted two half-hours. Longer Sessions occurred on December 12, 2022 (four half-
hours; 17:00 to 19:00) and January 23, 2023 (three half-hours; 16:30 and 18:00).

Bearing this all in mind, we fit regression models to obtain two ITT effects stemming from: (a) eligibility to
opt into one or more saving sessions (DiD designs Signed up Early vs. Never and Signed up Early vs. Late); and
(b) eligibility to sign up for the DFS itself (i.e., DiD design Octopus Customers vs. Bulb Customers). The two
regression models have the following form:
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yit = β0 + β1SPost-treat. Period,it + β2TSigned Up Early,it + β3(SPost-treat. Period,it × TSigned Up Early,it) + β4Hit + ϵit (2a)
yit = β0 + β1SPost-treat. Period,it + β2TOcto Customer,it + β3(SPost-treat. Period,it × TOcto Customer,it) + β4Hit + ϵit, (2b)

where yit is customer i’s average half-hourly consumption in study period t ∈ {1, 2} and SPost-treat. Period,it is
the binary indicator for treatment period — with SPost-treatment Period,it = 0 indicating the pre-treatment period (i.e.,
before the start of DFS events; October 1, 2022 to November 14, 2022; t = 1) and SPost-treatment Period,it = 1 indicating
the post-treatment period (i.e., after the start of DFS events; November 15, 2022 through March 23, 2023; t = 2).
Furthermore, TSigned Up Early,it and TOctopus Customer,it are the binary indicators for eligibility to receive treatment (i.e.,
encouragement to opt-in, as represented by signing up early, or encouragement to sign up for Saving Sessions, as
represented by being invited to sign up). For our first two DiD designs (i.e., Signed Up Early vs. Never; Signed
Up Early vs. Late; Equation (2a)), TSigned up Early,it = 1 for customers who signed up to take part in Saving Sessions
by or on November 14, 2022 (i.e., the day before first Saving Session). And, for our third DiD design (i.e., Octopus
Customers vs. Bulb Customers; Equation (2b)), TOctopus Customer,it = 1 for individuals who were a DFS-invited
Octopus Energy smart-meter customer (rather than a Bulb Energy customer).

Accordingly, β0, is the expected average half-hourly consumption in the pre-treatment period for control-group
customers who never signed up (first DiD design), who signed up late (second DiD design), or who were a Bulb
customer (third DiD design), β1 is the expected difference in average half-hourly consumption between the post-
and pre-treatment period, β2 is the expected difference in average half-hourly consumption between the treatment
and control groups owing to eligibility for Session opt-in (first and second DiD design) or the DFS itself (third
DiD design), and β3 — the coefficient for the multiplicative interactions (SPost-treatment Period,it × TSigned Up Early,it) or
(SPost-treatment Period,it × TOctopus Customer,it) — is the expected difference in the slope coefficient for time period (i.e.,
β1) between treatment groups (β2). Thus, β3 is the classic difference-in-differences (or double-difference) estimate
involving just four group means (Gelman et al., 2020, p. 442). And, in the present case, β3 is an ITT-type effect
summarizing the causal impact of eligibility for treatment (i.e., Session opt-in or DFS participation) on average
half-hourly consumption.32

Crucially, in using DiD, we necessarily make a (conditional) ignorability assumption in the following style:

d0, d1 ⊥ z | x, (3)

where, as discussed by Gelman et al. (2020, p. 442-445), d0, d1 are, respectively and in the present scenario,
the potential change in average half-hourly consumption yit between the post- and pre-treatment period under no treatment
and under treatment. Thus, by assuming conditional ignorability, we presumed that the distributions of potential
changes are independent of treatment assignment among customers with the same value for the confounding
variable x. Put simply, we assumed that the rate of change in yit between the pre- and post-treatment period
would be the same for the treatment and control groups in the absence of treatment (i.e., parallel trends in yit over
time). And, if this assumption holds, the post-pre difference in yit for the control group (i.e., Never Signed Up
Customers, Signed Up Late Customers, Bulb Customers), which is captured by β1 in Equation (2) when Tit =

0, is a valid empirical counterfactual trend for individuals in the treatment group (i.e., Signed Up Early Octopus

32To clarify the notion of “fourmeans”, and using Equation (2a) as an examplewhile ignoring pre-treatment variables, note that the expected
average half-hourly consumption for the control group in the pre-treatment period ȳSPost-treatment Period,it= 0, TSigned Up Early,it= 0 = (β0), the ex-
pected average half-hourly consumption for the control group in the post-treatment period ȳSPost-treatment Period,it= 1, TSigned Up Early,it= 0 =(β0+β1),
the expected average half-hourly consumption in the treatment group in the pre-treatment period ȳSPost-treatment Period,it= 0, TSigned Up Early,it= 1

= (β0 + β2), and the expected average half-hourly consumption for the treatment group in the post-treatment period
ȳSPost-treatment Period,it= 1, TSigned Up Early,it= 1 = (β0 + β1 + β2 + β3). Thus, β3 — i.e., the double difference of post-treatment period minus
pre-treatment period and treatment group minus control group— is the result of ((β0 + β1 + β2 + β3) - (β0 + β2)) - ((β0 + β1) - (β0)). And
((β0 + β1) - (β0)) is the expected counterfactual change in average half-hourly consumption between the post-treatment and pre-treatment
period that we assume to be valid for our treatment group by virtue of using a regression model (see Figure 3).
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Customers and Octopus Customers in general) such that, were β3 to be zero, β2 would merely summarize the
“jump” (i.e., difference in intercepts) between two parallel lines.

Note well that, for all three DiD designs and in the case of half-hourly consumption, we were highly unlikely to
have fallen afoul of this particular assumption (see Figures 3a to 3c). Nevertheless, we still included in our linear
predictorsHit — i.e., the average heating degree days (HDDs) in customer’s i’s region during period t. Hit is used
to adjust for the influence of outdoor temperature on domestic electricity consumption.33 We do not anticipate that
our results are vulnerable to the exclusion of other time-varying covariates.

Finally, the dataset we constructed to estimate the models summarized by Equations (2a) and (2b) is, funda-
mentally, hierarchical. That is, customer-period observations are nested within customers. Accordingly, we clus-
tered standard errors at the level of individual customers using their meter point administration number (MPAN).
Virtually all customers had properties with a single MPAN, where MPANs were the identifiers used for reconcili-
ation of consumption and demand reduction for the purposes of Saving Sessions remuneration.

ITT Effect Specific to Each Saving Session. Equation (2) only provided us with common ITT effects for: (a)
being eligible to opt into one or more saving sessions (Signed Up Early vs. Never Signed Up; Signed Up Early vs.
Signed Up Late): and (b) being eligible to sign up for the DFS itself (i.e., Octopus Customers vs. Bulb Customers).
Accordingly, we also considered heterogeneity in the three ITT effects acrossWinter 2022/23 by estimating variants
specific to each of the 13 energy-saving events h.

To do this, we used the same pre-treatment period observation detailed above (i.e., t = 1) but modified how
we constructed the singular post-treatment period observation (i.e., t = 2). Specifically, we constructed 13 post-
treatment period observations wherein average half-hourly consumption yit when t = 2 is calculated only using
recorded consumption for the half hours during which a Saving Session occurred (Table 1). Thus, for each Saving Session
h ∈ {1, ..., 13}, we separately fit regression models in the style of Equation (2) with the following general form:

yit = β0 + β1SPost-treat. Period h,it + β2TSigned Up Early,it + β3(SPost-treat. Period h,it × TSigned Up Early,it) + β4Hit + ϵit (4a)
yit = β0 + β1SPost-treat. Period h,it + β2TOcto Customer,it + β3(SPost-treat. Period h,it × TOcto Customer,it) + β4Hit + ϵit, (4b)

where SPost-treatment Period h,it, TSigned Up Early,it, and TOctopus Customer,it are binary indicators as in Equation (2) save
the Session restriction for SPost-treatment Period h,it, β3 is an ITT-type effect summarizing the causal impact of eligibility
for treatment (i.e., Session-specific opt-in or participation in the DFS itself during a specific Saving Session) on
average half-hourly consumption during a specific Saving Session h. We again clustered standard errors using
MPANs.

Note that our second DiD design (i.e., Signed Up Early vs Signed Up Late) does not produce Session-specific
estimates for Saving Sessions in February andMarch 2023. This is because customers’ presence in the control group
is, by definition, time limited. That is to say, to be in the control group for our second DiD design an individual
must eventually sign up to take part in Saving Sessions, where we set the cut-off for sign-up as January 30, 2023
such that customers who signed up before this date (and customers who never signed up) were ineligible for
inclusion in the control group for our second DiD design.

33Heatingdegree days (HDD)— i.e., the number of degrees that a day’s average temperature is below some typical temperature— is ametric
used to quantify the amount of energy demand for the purposes of heating a building in a 24-hour period. To calculate HDD, we drew hourly
temperature data from various weather stations. In particular, for each of the 14 district networks in Great Britain, we gathered the average
temperature of the weather stations in each district. We then created anHDD-like metric specific to a half hour t usingmax {0, 15.5ºC−Avg. ºCt

48
}.

To clarify, consider that, for instance, an average temperature above 15.5ºC during a half hour would count as 0 HDDs and that an average
temperature of 15ºC during a half-hour would count as 0.5 ÷ 48 = 0.0104 HDDs.
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Common Local Average Treatment Effect (LATE) of Session Participation on in-Session Consumption. Recall
that “treatment” for our three DiD designs— i.e., opting into a Saving Session— involves non-compliance. For our
first and second DiD designs, not all customers who signed up early to DFS events ultimately go on to opt into one
or more Saving Sessions — where those customers who do opt in may do so due to third factors that also govern
consumption (i.e., opt-in is endogenous due to confounding). In this respect, being signed up to DFS events is a
form of non-randomized encouragement received by those who signed up early but not by those who never signed
up and only partially by those who signed up late. Yet, we would like to know the causal impact of actual Session
participation on electricity use when aggregating across all 13 Saving Sessions.

Accordingly, we estimated the LATE of Session participation on in-Session consumption for our first and sec-
ond DiD designs using a two-stage ordinary least-squares (2SLS) procedure (Gelman et al., 2020, Greene, 2019,
Wooldridge, 2010) using the Python module “Linearmodels” (Sheppard et al., 2023). The first stage (i.e., the first
model) was anOLS regression of an aggregated version of our treatment with imperfect compliance POpt-in,it — i.e., a
continuous variable for the proportion of the 13 Saving Sessions a customer i opted into in the post-treatment period
(t = 2) such that POpt-in,it := 0 when t = 1 and 0≤ POpt-in,it ≤ 1 when t = 2— conditional on our binary encourage-
ment in the post-treatment period t = 2 as given by the multiplicative interaction (SPost-treat. Period,it × TSigned Up Early,it),
itself a binary indicator. The second stage (i.e., the second model) was an OLS regression of customer i’s period-
specific average half-hourly consumption yit conditional on the predicted value of POpt-in,it from our first model,
i.e., P̂Opt-in,it.

Formally, the LATE for aggregate Session participation POpt-in,it for both our first and second DiD strategy,
which we estimated using a joint procedure to correct the standard errors in the second stage (Gelman et al., 2020)
while clustering standard errors using MPANs, were obtained using regression models with the following general
form:

yit = β0 + β1SPost. Period,it + β2TSigned Up Early,it + β3P̂Opt-in,it + β4Hit + ϵit,y (5a)
POpt-in,it = γ0 + γ1SPost. Period,it + γ2TSigned Up Early,it + γ3(SPost. Period,it × TSigned Up Early,it) + γ4Hit + ϵit,POpt-in (5b)

POpt-in,it =

0 if t = 1
Proportion of 13 Saving Sessions i opted into. if t = 2,

where the linear predictor for POpt-in,it (i.e., Equation (5b)) and the linear predictor for yit (i.e., Equation (5a))
are the first- and second-stage equations, SPost-treat. Period,it and TSigned Up Early,it are binary indicators, the latter of
which indicates, depending on DiD design, customers who never signed up or customers who signed up late
when TSigned Up Early,it = 0, POpt-in,it is the endogenous continuous treatment for Octopus Energy customers who signed-
up early and opted in to various numbers of Saving Sessions above zero, P̂Opt-in,it is the predicted value for this continuous
treatment, (SPost-treat. Period,it × TSigned Up Early,it) is our non-random binary instrument/encouragement in the post-
treatment period (t = 2), and Hit is the average heating degree days in customer’s i’s region during period t.

Given this set-up, γ3 in Equation (5b) is the expected difference in the slope coefficient for time period between
treatment groups and it captures the expected level of compliance in the post-treatment period for those in the
treatment group in relation to all 13 Saving Sessions. And β3 in Equation (5a) is the LATE representing the average
causal effect of Session participation when moving from participation in zero energy-saving events (i.e., POpt-in,it = 0) to
participation in all 13 energy-saving events (i.e., POpt-in,it = 1) on average half-hourly in-Session consumption amongst
those individuals who’s compliance rate in relation to all 13 Saving Sessions increases — regardless of level — due
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to early DFS participation.34

Note that we include SPost-treatment Period,it and TSigned Up Early,it in Equations (5a) and (5b) to adhere to best prac-
tices for using multiplicative interactions and to reflect typical applications of 2SLS whereby the first- and second-
stage linear predictors are identical save for instrument and the associated treatment-with-non-compliance.

LATE of Session Participation onConsumptionDuring Each Saving Sessions. For our first and secondDiD de-
signs, we also obtained the LATE for each Saving Session individually using a setup (Equation (6)) thatmixes those
summarised in Equations (4) and (5). Note well that these models concern POpt-in h,it — i.e., a binary treatment
indicator for whether or not a customer i opted into a Saving Session h — as opposed to POpt-in,it, the continuous
treatment variable for the proportion of Saving Sessions that i opted into. Thus, in this instance, our first-stage
models for POpt-in h,it are linear probability models for a binary outcome and the issues discussed in Footnote 34
do not apply. Session-specific LATEs were estimated using 2SLS models with the following general form and
clustered standard errors based on MPANs:

yit = β0 + β1SPost. Period h,it + β2TSigned Up Early,it + β3P̂Opt-in h,it + β4Hit + ϵit,y (6a)
POpt-in h,it = γ0 + γ1SPost. Period h,it + γ2TSigned Up Early,it + γ3(SPost. Period h,it × TEarly,it) + γ4Hit + ϵit,POpt-in h

(6b)

POpt-in h,it =

0 if t = 1
Customer i opted in to Saving Session h? if t = 2,

where SPost-treatment Period,it and TSigned Up Early,it are binary indicators, the latter of which indicates, depending on
DiD design, customers who never signed up or customers who signed up late when TSigned Up Early,it = 0.

Two-LayeredNon-Compliance and the LATEofDFSSign-up andSession ParticipationWhenComparingOcto-
pus and BulbCustomers. Recall that “treatment” for our thirdDiD design involves two layers of non-compliance
as: (a) not all Octopus customers invited (i.e., encouraged) to sign up to take part in DFS events did so; and (b)
not all customers signed up to DFS events (itself a form of encouragement) opted in to participate in one or more
Saving Sessions. Thus, customers who signed up and subsequently opted in may do so due to third factors that
also influence consumption (i.e., both sign-up and opt-in are endogenous due to confounding). As with our first
and second DiD designs, we would like to know the causal impact of actual Session participation, as well as the
causal impact of actually signing up, on electricity usage when aggregating across all 13 Saving Sessions.

To manage non-compliance we used four models (Equations (7) to (9)) with clustered standard errors based
on customers’ MPANs. Specifically, we estimated the common LATE of DFS sign-up on in-Session consumption
and the common LATE for Session participation on in-Session consumption for our third DID design using a two-
stage least-squares (2SLS) regression models with the following general form—where the issues related to using
a binary instrument for a continuous treatment discussed in Footnote 34 apply:

34As POpt-in,it is a continuous variable summarizing the proportion of the 13 Saving Sessions that a customer i opted into, the LATE we
estimated using Equation (5) is, technically, not identifiedwithout additional, strong assumptions. To clarify, and followingGelman et al. (2020,
p. 430), we have used a binary instrument— i.e., (SPost-treatment Period,it×TSigned Up Early,it)—and a continuous treatment (i.e., POpt-in,it) which
is tantamount to scenario wherein one uses a single binary instrument to identify the causal effect of multiple different treatments— i.e., one (ordered)
treatment for each level of the continuous variable (here, {(0÷ 13), (1÷ 13), ..., (13÷ 13)}) — such that there are more treatments than there
are instruments, where each treatment may produce different causal effects (e.g., the causal impact of one’s compliance with participating in
two Saving Sessions as distinct from the causal impact of one’s compliance with participating in ten Saving Sessions). Thus, we assume that
our instrument is relevant to all 13 levels of our continuous treatment {(0÷ 13), (1÷ 13), ..., (13÷ 13)}, that our instrument induces groups
of compliers who are similar in their unobserved characteristics across all levels of our continuous treatment, and that the causal effects of
compliance among these latent sub-populations are “homogenous” and thus do not vary across levels of POpt-in,it in a manner whereby the β3

is not an accurate summary of the LATEs for all complier groups.

20



yit = β0 + β1SPost. Period,it + β2TOcto Cust.,it + β3P̂Signed,it + β4Hit + ϵit,y (7a)
PSigned,it = γ0 + γ1SPost. Period,it + γ2TOcto Cust.,it + γ3(SPost. Period,it × TOcto Cust.,it) + γ4Hit + ϵit,PSigned (7b)

PSigned,it =

0 if t = 1
Proportion of 13 Saving Sessions remaining after i signed up to DFS events. if t = 2

yit = β0 + β1SPost. Period,it + β2TOcto Cust.,it + β3P̂Opt-in,it + β4Hit + β5 + ϵit,y (8a)
POpt-in,it = γ0 + γ1SPost. Period,it + γ2TOcto Cust.,it + γ3(SPost. Period,it × TOcto Cust.,it) + γ4Hit + ϵit,POpt-in (8b)

POpt-in,it =

0 if t = 1
Proportion of 13 Saving Sessions i opted into. if t = 2,

In both Equations (7) and (8), SPost-treatment Period,it and TOctopus customers,it are binary indicators for time and treat-
ment group, where TOctopus customers,it = 0 indicating Bulb customers, PSigned,it and POpt-in,it are aggregated version of
our treatments with imperfect compliance, P̂Signed,it and P̂Opt-in,it are their predicted values, and the multiplicative
interaction (SPost-treatment Period,it × TOctopus Customer,it) is our binary encouragement in the post-treatment period.

Session-specific LATEs for sign-up and opt-in for our third DID design were estimated using 2SLSmodels with
the following general form where, like Equation (6), the issues discussed in Footnote 34 do not apply:

yit = β0 + β1SPost. Period h,it + β2TOcto Cust.,it + β3P̂Signed h,it + β4Hit + ϵit,y (9a)
PSigned h,it = γ0 + γ1SPost. Period h,it + γ2TOcto Cust.,it + γ3(SPost. Period h,it × TOcto Cust.,it) + γ4Hit + ϵit,PSigned h

(9b)

PSigned h,it =

0 if t = 1
Customer i signed up to DFS events before Saving Session h? if t = 2

yit = β0 + β1SPost. Period h,it + β2TOcto Cust.,it + β3P̂Opt-in h,it + β4Hit + ϵit,y (10a)
POpt-in h,it = γ0 + γ1SPost. Period h,it + γ2TOcto Cust.,it + γ3(SPost. Period h,it × TOcto Cust.,it) + γ4Hit + ϵit,POpt-in h

(10b)

POpt-in h,it =

0 if t = 1
Customer i opted in to Saving Session h? if t = 2,

where PSigned h,it (Equation (9)) and POpt-in h,it (Equation (10)) are binary indicators for our treatments with
imperfect compliance, P̂Signed h,it and P̂Opt-in h,it are their predicted values, and the multiplicative interaction
(SPost-treatment Period h,it × TOctopus Customer,it) is our binary encouragement in the post-treatment period.

Is Demand Displaced or Destroyed? A major point of interest for policymakers, grid operators, and energy
retailers is whether reduced electricity consumption during DFS events influences demand during periods of time
that are immediately adjacent to those half-hours within which an energy-saving events occurs (i.e., the half-hours
immediately before and immediately after a Saving Session). Among those in the British energy sector, increased
demand prior to or in the wake of an energy-saving events is taken as evidence of “demand displacement”. In
contrast, a lack of meaningful change in demand during the periods around an energy-saving event is taken as
evidence of “demand destruction”. Decreased demand prior to or in the wake of an energy-saving events is also
taken as evidence of “demand destruction”. This latter scenario can be viewed as a temporal spillover phenomenon

21



whereby restricted use of electricity during an energy-saving event is associated with reduced consumption in the
surrounding time periods.

Formally, demand destruction and demand displacement are statements about the impact of reduced demand
during an energy-saving event on temporally-adjacent electricity consumption. This is in contrast to the impact of the
event itself on consumption during adjacent time periods. However, in keeping with our other analyses, we used
our first DiD strategy (i.e., Signed Up Early vs. Never Signed Up) to explore whether: (a) mere eligibility for
participation in one or more Saving Sessions; and (b) actual Session participation (i.e., opt-in) are associated with
temporally-adjacent electricity consumption in a manner that might be suggestive of displacement or destruction.

To do this, let us, for the purposes of this subsection, redefine the above set of period indices t ∈ {1, 2} as
t ∈ {1, 3} whereby t = 1 continues to indicate our pre-treatment period (October 1, 2022 to November 14, 2022)
but t = 3 now indicates the post-treatment period. Accordingly, to gauge the possibility of demand destruction or
demand displacement, we pooled our data across all 13 Saving Sessions to construct two additional single-period
observations in the vein of Bertrand et al. (2004) — i.e., a pre-Session period (t = 2) and a post-Session period
(t = 4) —which temporally flank our original single-period post-treatment observations for our first DiD strategy
discussed above such that now t ∈ {1, 2, 3, 4}. The pre-Session period (t = 2) was constructed by averaging each
customer i’s consumption across each pair of half-hours immediately before each Saving Session h ∈ {1, ..., 13}.
The post-Session period (t = 4) was constructed by averaging each customer i’s consumption across each pair of
half-hours immediately after each Saving Session h.

Keeping this in mind, we wished to know the causal impact of eligibility for Session participation (i.e., the
ITT effect) and actual Session participation (i.e., the LATE) on average half-hourly consumption when comparing
our treatment and control group while also comparing t = 1 (the pre-treatment Period) to t = 2 (the pre-Session
period) or t = 1 and t = 4 (the post-Session period).

Accordingly, to obtain the ITT effects, we fit two regression models (Equation (11)) that are variants of Equa-
tion (2) with the following form:

yit = β0 + β1SPre-Session Period,it + β2TSigned Up Early,it + β3(SPre-Session Period,it × TSigned Up Early,it) + β4Hit + ϵit (11a)
yit = β0 + β1SPost-Session Period,it + β2TSigned Up Early,it + β3(SPost-Session Period,it × TSigned Up Early,it) + β4Hit + ϵit, (11b)

where SPre-Session Period,it and SPre-Session Period,it are binary indicators for time period.
The LATE for Session participation was estimated using two additional two-stage models (Equations (12)

and (13)) that are variants of Equation (5) with the following form, noting that our aggregation across Sessions
implicates issues related to using a binary instrument and a continuous treatment discussed in Footnote 34:

yit = β0 + β1SPre-Session Period,it + β2TSigned Up Early,it + β3P̂Opt-in,it + β4Hit + ϵit,y (12a)
POpt-in,it = γ0 + γ1SPre-Session Period,it + γ2TSigned Up Early,it + γ3(SPre-Sess. Period,it × TEarly,it) + γ4Hit + ϵit,POpt-in (12b)

yit = β0 + β1SPost-Session Period,it + β2TSigned Up Early,it + β3P̂Opt-in,it + β4Hit + ϵit,y (13a)
POpt-in,it = γ0 + γ1SPost-Session Period,it + γ2TSigned Up Early,it + γ3(SPost-Sess. Period,it × TEarly,it) + γ4Hit + ϵit,POpt-in (13b)

POpt-in,it =

0 if t = 1
Proportion of 13 Saving Sessions i opted into. if t = 2 ∨ 4 where t ∈ {1, 2, 3, 4},

Daily Demand. Using our first DiD strategy (i.e., Signed Up Early vs. Signed Up Never), we also considered
the causal impact of eligibility for Session participation (i.e., the ITT effect) and actual Session participation (i.e.,
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the LATE) on daily electricity consumption. Once again following Bertrand et al. (2004), we collapse time series
data across multiple days (cf. multiple half-hours on specific days) into just two observations, one pre-treatment
period observation (t = 1) and one post-treatment period observation (t = 2).

For the pre-treatment period in our day-level analysis, our response variable yDaily,it is the average of customer
i’s daily consumption (i.e., the sum of consumption across all 48 half-hours) across all weekdays from October
1, 2022 to November 14, 2022. For the post-treatment period in our day-level analysis, yDaily,it is an average of
customer i’s daily consumption across all 13 days that included a Saving Session (Table 1).

Accordingly, we estimated the ITT effect of eligibility for Session participation on average daily consumption
using a regression model (Equation (14)) with MPAN-clustered standard errors and the following form:

yDaily,it = β0 + β1SPost-treat. Per.,it + β2TSigned Up Early,it + β3(SPost-treat. Per.,it × TSigned Up Early,it) + β4Hit + ϵit (14)

And we estimated the LATE for Session participation using 2SLS and MPAN-based clustered standard errors,
noting that our aggregation across Sessions implicates issues related to using a binary instrument and a continuous
treatment discussed in Footnote 34:

yDaily,it = β0 + β1SPost-treat. Per.,it + β2TSigned Up Early,it + β3P̂Opt-in,it + β4Hit + ϵit,yDaily (15a)
POpt-in,it = γ0 + γ1SPost-treat. Per.,it + γ2TSigned Up Early,it + γ3(SPost-treat. Per.,it × TEarly,it) + γ4Hit + ϵit,POpt-in (15b)

POpt-in,it =

0 if t = 1
Proportion of 13 Saving Sessions i opted into. if t = 2

For both Equations (14) and (15), yit is customer i’s average daily electricity consumption across the pre-
treatment period (t = 1) or post-treatment period (t = 2), SPost-treatment Period,it is the binary indicator for treatment
period, TSigned Up Early,it is the binary indicator for eligibility to receive treatment (i.e., encouragement to opt-in to
specific Saving Sessions), and, somewhat differently to the other models, Hit is the average heating degree days
per day in customer’s i’s region during period t.

Heterogeneity in Common ITT Effect Across Observable Customer Characteristics. Finally, we used our first
DiD strategy (i.e., SignedUpEarly vs. Never SignedUp) to consider heterogeneity in the causal impact of eligibility
for Session participation (i.e., the ITT effect) when pooling across all 13 Saving Sessions. That is, we estimated our
common ITT effect conditional on key traits of customers that we expect to modulate energy-related behaviours
— namely, historical energy usage, the level of deprivation in one’s geographic region, whether or not one has a
smart-tariff, and the degree to which one’s home is energy efficient. In this respect, the quantities we recover may
be called “Conditional Average Treatment Effect” (CATEs), but note well that they are ITTs, not ATEs, where the
ITTs are “diluted” due to non-compliance with treatment (i.e., Session participation).

To estimate conditional ITT effects, we extended Equation (2a) using three-waymultiplicative interactions. And, to
keep our model specifications tractable, we estimated the coefficients for the three-way interactions involving each
customer characteristic x separately, where we also discretized continuous characteristics in order to incorporate
them into our models using easily-interpretable binary indicators (i.e., “dummy” variables).

For instance, and focusing on Estimated Annual Consumption (kWh), which we discretize into the three cate-
gories “high” (EAC≥ 2,900 kWh/year), “low” (EAC< 2,900 kWh/year), and “Unknown/Missing”35, we obtained
conditional ITT effects using regression models with the general form:

35Estimated Annual Consumption (kWh) is Octopus Energy’s predicted customer consumption based on meter readings over the past year.
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yit = β0 + β1SPost-treat. Period,it + β2TSigned Up Early,it + β3(SPost-treat. Period,it × TSigned Up Early,it) + β4Hit

+β5xEAC= High,it + β6(SPost-treat. Period,it × xEAC = High,it) + β7(TSigned Up Early,it × xEAC = High,it)

+β8xEAC= Unknown,it + β9(SPost-treat. Period,it × xEAC = Unknown,it) + β10(TSigned Up Early,it × xEAC = Unknown,it)

+β11(SPost-treat. Period,it × TSigned Up Early,it × xEAC = High,it)

+β12(SPost-treat. Period,it × TSigned Up Early,it × xEAC= Unknown,it) + ϵit,

(16)

where xEAC = Low,it is the reference category.

3 The consequences of participating in Saving Sessions: pre-posts
and difference-in-differences

In this section, we show results from four approaches to estimate the treatment effect of the Savings Sessions
from the Octopus Energy customers. First we used the approach that NGESO and DFS providers use to estimate
demand reduction, a kind of pre-post effect within opted in households. Second, our first DiD approach compares
differences between thosewhowere invited to sign up to Savings Sessions and did so before the first Session versus
those whowere invited but never signed up. Third, our second DiD approach compares differences between those
who were invited to sign up to Savings Sessions and did so before the first Session versus those that signed up late,
in case there are unobservable characteristics associated with eventual sign-up that might threaten the validity of
our first DiD. Fourth, we leveraged the natural experiment associatedwith Octopus Energy acquiring Bulb Energy.

3.1 Demand reduction as measured by NGESOmethodology, a modified “pre-post” calcu-
lation

We examined the magnitude of demand reduction using NGESO’s endorsed methodology to measure demand
reduction, described in Section 2.4. According to this methodology, even groups that were not participating in
Saving Sessions showed evidence of small demand reduction, as can be seen in Table 2. This pattern suggested
that the standard “P376 baselining”methodology produced small biases overestimating demand reduction, at least
during the 29 half-hours between November 15, 2022 and March 23, 2023 when the 13 Saving Sessions occurred.

In Table 2 and Figure AF.3, there were four groups of interest. First, there were those who signed up to Saving
Sessions and opted in to the Session –we expect these customers’ actual consumption to be lower than their baseline
consumption on average, assuming that customers were on average successful in reducing their consumption.
There were then three groups who did not opt in to the Session, for different reasons: 1) those who signed up but
did not opt in to a Session; 2) those who had not signed up by the Session (or never signed up at all); and 3) Bulb
customers who did not sign up to Saving Sessions.
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Table 2: Demand reduction, measured using P376 methodology, by customer participation or non-participation.

Group Proportion whose
actual consumption <

baseline consumption

Average demand
reduction (kWh per
half-hour) during
Saving Sessions

Customers ∗
half-hours

Signed up and opted in 74.4% 0.3052 8,878,988
Not signed up yet, or ever 54.6% 0.0236 33,664,210
Signed up, but not opted in 57.7% 0.0307 5,357,817
Bulb customer & never signed up 55.0% 0.0053 4,321,299

Note: We examined demand reduction according to the methodology prescribed by NGESO, depending on whether customers had opted in to
a Saving Session. Here, we show this reduction for: customers who signed up and opted in to a Session, customers who signed up but did not
opt in, invited Octopus Energy customers who never signed up, and Bulb customers who did not sign up. Approximately 55% of the customers
in the latter three non-participating groups showed a small demand reduction; on average, their demand reduction was between 2% and 11%
of the average demand reduction of customers who signed-up and opted-in.

With this said, as Table 2 shows, demand reduction – as measured by the “unclipped” version of the standard
NGESOmethodology – was much higher for customers who had signed up and opted in (0.305 kWh) than for the
three sets of customers who were not participating (0.005 - 0.031 kWh demand reduction).

3.2 Demand reduction as measured by difference-in-differences approaches

Section 3.1 compared unclipped demand reduction based on P376 baselines between customers who participated
in Sessions and those who did not. As discussed, unclipped demand reduction is a modified pre-post calculation.
Comparing pre-posts between groups is, effectively, a series of informal DiDs. In this section, we conducted more
formal DiD analyses to identify causal estimates of demand reduction from customers participating in Saving
Sessions, during the Sessions. In all three of our DiDs, the key assumptions are parallel trends and no anticipation
effects. We examined pre trends visually in Section AI.1. We conducted formal tests of parallel pre-treatment
(pre-Saving-Session) trends in Section AI.4.

3.2.1 Impacts of participation on consumption during Saving Sessions

The ITT effects of Saving Sessions from our three DiDs differed, but in ways that made sense given their differing
samples. In Figure 4 andTableAT.4we showhow the estimates differ byDiD strategy. As discussed in Section 2.4.2,
the ITT for the first two DiD strategies is similar in interpretation to the first LATE (of sign-up) for the Octopus
versus Bulb DiD. The LATE on opt-in can be interpreted similarly across the three estimation strategies. However,
the Signed Up Early versus Late DiD had a smaller sample of Saving Sessions – only the first nine, rather than all
13.

Using our Octopus versus Bulb DiD, we found that simply inviting customers to sign up to Saving Sessions is
associated with a 9.43% (± 0.26% 95% confidence interval) reduction in consumption during Saving Sessions.36
Using all three of ourDiDs, we found that signing up to participate inDFS events reduced demand by≈25%during
Saving Sessions.37 Additionally, we found that “opting in” to participate in Saving Sessions reduced demand by
≈40% during the campaign.38

36Approximately half of Octopus Energy customers had smart meters, so the effect of Octopus Energy participating in DFS was approxi-
mately half of the 10% effect of invitation, i.e., a 5% demand reduction across Octopus Energy’s smart- and traditional-meter customer base.

37Specifically: -23.88% (±0.13%) in the Signed Up Early versus Never DiD, -26.05% (±0.94%) in the Signed Up Early versus Late DiD, and
26.67% (±0.69%) in the Octopus versus Bulb DiD.

38Specifically: -37.94% (±0.29%) in the Signed Up Early versus Never DiD, -39.74% (±1.50%) in the Signed Up Early versus Late DiD, and
-43.59% (±1.14%) in the Octopus versus Bulb DiD.
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Figure 4: Difference-in-differences results.

Note: The results of the three DiDs with 1) Customers who signed up before the 1st Saving Session versus customers who never signed up, 2)
Customers who signed up before the 1st Saving Session versus customers who signed up after the 9th Saving Session and 3) Octopus customers
invited to sign up versus smart-meter Bulb customers (whowere not invited to participate in the DFS).We showpoint estimates and confidence
intervals as a percent of each DiD’s control group average half-hourly consumption during Saving Sessions. For our first two DiDs – 1) Signed
Up Early versus Never, and 2) Signed Up Early versus Late – the ITT effect is the effect of sign-up. For the Octopus versus Bulb DiD, the ITT
effect is the effect of being invited, and we estimate the LATE of sign-up. For the effect of opt-in, we use the LATE on opt-in from all three DiDs.

In kWh terms, we found that signing up to Sessions caused a reduction during Sessions of≈0.09 to 0.1 kWh per
half-hour and opting in a reduction of ≈0.14 to 0.17kWh per half-hour (the ranges represent the slight differences
in the results from our three DiDs; see Table AT.4). Customers not participating in Saving Sessions consumed≈0.4
kWh per half-hour during the half hours when Saving Sessions occurred. To put these figures in perspective, the
≈0.4 kWh per half-hour consumption in the control groups was less than a dishwasher or clothes washer uses (0-1
kWh per half-hour) andmuch less than an oven or dryer uses (0.5-3 kWh per half-hour). Even a 60 watt bulb (0.03
kWh per half-hour, assuming it is not an LED) can be a meaningful source of reduction if turned off for an hour,
though the bulb’s consumption is much lower if it is an LED. In any given half-hour, these appliances consume
more electricity on their own; but, of course, they are not on all day. Still, postponing or avoiding using them can
have a large impact on half-hourly consumption.

In Figure 5, Figure 6a, and Figure 6b, we show the impact for each Saving Session, from the series of regressions
where each Saving Session is its ownpost-treatment period, by the effectwe’remeasuring – of being invited, signing
up, or opting in. In these figures, we show the difference-in-differences impact as the percent of the “control”
group’s half-hourly consumption during each Saving Session. 39

39In the appendix, we also show these impacts in kWh (the direct outcomemeasure in ourDiD regressions): TablesAT.1 toAT.3, FigureAF.1,
and Figure AF.2.
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Figure 5: Difference-in-differences results: impact of being invited to sign up.

Note: Coefficient (and 95% confidence intervals, whiskers) on the difference-in-differences in our Octopus versus Bulb DiD for each of 13
regressions, where the post-treatment period in each regressionwas customers’ half-hourly consumption during each of the 13 Saving Sessions.
We interpreted this coefficient as the causal impact of being invited to sign up to Saving Sessions.

Figure 6: Difference-in-differences results.

(a) Impact of signing up. (b) Impact of opting in.
]

Note: Coefficient (and 95% confidence intervals, whiskers) on the difference-in-differences in our three DiDs for each of 13 regressions, where
the post-treatment period in each regression is customers’ half-hourly consumption during each of the 13 Saving Sessions. In theOctopus versus
Bulb DiD (left), the coefficient was on the local average treatment effect (LATE) of sign-up, a variable equal to 1 if a customer had signed up
to Saving Sessions by that Session, else 0. We interpreted these coefficients as the causal impacts of being signed up to Saving Sessions by the
date of the Session. In each DiD (right), the coefficient was on the local average treatment effect (LATE) of opt-in, a variable equal to 1 if a
customer opted in to the Session, else 0. We interpreted these coefficients as the causal impacts of opting in to Saving Sessions on the date of the
Session.

In examining demand reduction by event, we saw suggestive evidence that the treatment effect declined over
the course of the DFS season, and that it seemed to rise back to initial levels on the “live” events on January 23 and
24, 2023, which involved higher incentives, more press, and extra reminders. The pattern of declining treatment
effects over the winter cannot solely be attributed to new sign-ups reducing their demand by less than early sign-
ups, which could attenuate the overall average demand reduction in theOctopus versus BulbDiD. After all, we saw
this same pattern even in the first two DiD strategies where the treatment group was always early sign-ups. Thus,
the effect would have to be at least partially due to declining performance per individual signed up household.
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However, with only 13 Saving Sessions, this evidence on a potential declining level of demand reduction should
be treated with caution.

Importantly, we compared our measures of demand reduction from each of our three DiDs to the estimates
that NGESO’s prescribed “P376” methodology would have calculated for the same samples in each analysis. The
“unclipped” version of the P376 methodology, applied across each DiD’s full treatment group (regardless of opt-
in), approximated our DiD results well – 2.4 and 3.4% higher than our first two DiDs’ estimates and 13.7% lower
than our Octopus versus Bulb DiD estimate. As discussed in Section 2.4.1, the official version of the P376 method-
ology is the “clipped” version, and this resulted in large over-estimations – 70-80% in the first two DiDs and 264%
in the third. However, the first two DiDs’ signed up groups contained a mix of customers who opted in and did
not opt in, and the Octopus versus Bulb DiD contains a mix of Octopus customers who signed up and did not
sign up. Most of the upward bias came from these customers, whose unclipped demand reduction is near-zero
but whose clipped demand reduction can be substantial, as negative baselining errors do not cancel out positive
ones. Official demand reduction – as reported to NGESO from DFS providers such as Octopus Energy – was the
clipped demand reduction of opted in customers only. This sample selection substantially reduced the bias from
the official reported statistics. As we see in Table AI.5 and discuss further in Section 5, our DiD estimates were on
average actually higher than demand reduction estimated by unclipped P376 among opt-ins, though still lower than
the demand reduction estimated by clipped P376 among opt-ins.

Finally, note that results obtained using our first and third DiD strategies are not artifacts of what some readers
may regard as an unusual combination of difference-in-differenceswith instrumental variables estimations (cf. “in-
strumented difference-in-differences”). Indeed, in Section AI.3, we show that are results are virtually unchanged
when comparing LATEs obtained using our binary instruments (i.e., the multiplicative interactions between treat-
ment group and treatment period) and 2SLS regression toWald estimates derived “by hand” (Gelman et al., 2020,
p. 426) — i.e., ratios that are the result of dividing our ITT effects for our first and third DiD designs from Equa-
tions (2) and (4) by the overall Saving Session opt-in rate and the Session-specific opt-in rates (i.e., the compliance
rate). Our approach yields nearly identical figures for: (a) the common and Session-specific LATEs of Session
opt-in on consumption obtained using our first DiD design (Table AI.1); (b) the common and Session-specific
LATEs of DFS sign-up on consumption obtained using our third DiD design (Table AI.2); and (c) the common and
Session-specific LATEs of Session opt-in on consumption obtained using our third DiD Design (Table AI.3).

3.2.2 Impacts of participation on consumption just before and just after Saving Sessions

We also examined the impact of Saving Sessions on consumption in the hour just before and just after Saving
Sessions. As shown in Tables 3 and 4, we found evidence of small but meaningful “spillover” of reduction into
neighboring half-hours.40 In other words, we see evidence of demand destruction.

40In this case, the results differ by DiD strategy more than one might expect. The first two DiD strategies’ ITT estimates accorded with each
other, but the Octopus versus Bulb difference-in-difference produces overall higher impact estimates for the hour “just after” Saving Sessions.
The LATE on sign-up for the Octopus versus Bulb DiD, for example, indicates a reduction of 0.0355 kWh per half-hour in the hour just after, in
contrast to effects of approximately 0.01 kWh in the first two approaches.
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Table 3: Impact of Saving Sessions on hour just before Session (kWh per half-hour).

DiD approach ITT Average consumption
(kwh per half-hour)
during SS

ITT in %

Signed Up Early versus Never -0.0079 (0.0005) 0.324 -2.44%
Signed Up Early versus Late -0.0067 (0.0018) 0.312 -2.15%
Octopus versus Bulb -0.0034 (0.0003) 0.326 -1.04%

Note: Coefficient (and standard errors, in parentheses) on the difference-in-differences in our three DiDs, where the post-treatment period
in each regression was customers’ half-hourly consumption during the hour before Saving Sessions. For our first two DiDs – 1) Signed Up
Early versus Never, and 2) Signed Up Early versus Late – we interpreted these coefficients as the impact of signing up to Saving Sessions on
consumption in the hour just before the Saving Session. For the Octopus versus Bulb DiD, we interpreted this coefficient as the impact of being
invited to sign up to Saving Sessions on consumption in the hour just before the Saving Session.

To investigate this question further, we used this samemethod to go farther back and forward in time to produce
Figure 7. There are some potential biases induced by this method in the context of our two-periodDiD set-up aswe
go too far backward or forward in time – i.e., into overnight half-hours. The pre-treatment period in our DiDs is the
average half-hourly consumption between 09:00 and 22:00 fromweekdays inOctober and the first half ofNovember.
This consumption overlaps our post-treatment period, whether in our analyses of in-Sessions consumption or of
consumption just before and just after Sessions. We also know that our treatment and control groups from each
DiD have similar consumption profiles during those hours of the day. As we move far enough back or forward
in time in the definition of our post-treatment period, however, this concordance between pre- and post-treatment
periods breaks down, causing a potential violation of parallel trends. With this in mind, we avoided examining the
impact of Saving Sessions on overnight consumption. In order to compare similar half-hours as we went farther
back and forward in time, we constructed a new sample of Saving Sessions: those that started at 17:00 or 17:30 and
finished at 18:00 or 18:30.41 We then implemented our DiD separately for each half-hour in the seven hours before
and the 4 hours after these Sessions began (thus the first hour represents the two half-hours during the Session).

Table 4: Impact of Saving Sessions on hour just after Session (kWh per half-hour).

DiD approach ITT Average consumption
(kwh per half-hour)
during SS

ITT in %

Signed Up Early versus Never -0.0089 (0.0005) 0.363 -2.45%
Signed Up Early versus Late -0.0114 (0.0018) 0.367 -3.10%
Octopus versus Bulb -0.0125 (0.0003) 0.373 -3.35%

Note: Coefficient (and standard errors, in parentheses) on difference-in-differences in our three DiDs, where the post-treatment period in each
regression was customers’ half-hourly consumption during the hour after Saving Sessions. For our first two DiDs – 1) Signed Up Early versus
Never, and 2) Signed Up Early versus Late – we interpreted these coefficients as the impact of signing up to Saving Sessions on consumption in
the hour just after the Saving Session. For the Octopus versus Bulb DiD, we interpreted this coefficient as the impact of being invited to sign up
to Saving Sessions on consumption in the hour just after the Saving Session.

41This left us with six sessions: Sessions 1, 2, 3, 4, 7, 10, and 11.
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Figure 7: Event study of the six Saving Sessions that spanned 17:00 to 18:00 or 17:30 to 18:30.

Note: We show the coefficient on the DiD from a series of regressions using the Signed Up Early versus Never DiD sample. We interpret this
coefficient as the demand reduction during the relevant half-hours caused by signing up to Saving Sessions (an ITT effect diluted by incomplete
opt-in). The times “0” and “0.5” on the x-axis are from a regression where the post-treatment period is half-hourly consumption during Saving
Sessions – two half-hours per Session. All other points on the x-axis are from regressions where the post-treatment period is a single half-hour
–X hours before the Session started, if before, orX hours after the Session finished, if after. The values of the Never Signed Up group are their
actual consumption during each half-hour during the days of the six Saving Sessions that panned 17:00 to 18:00 or 17:30 to 18:30. The values of
the Sign Up (early) group are the sum of the Never Signed Up group consumption and the beta on the DiD interaction of the post-treatment
period and the Sign Up indicator. We do not show the 95% confidence interval around each point, as the interval is too narrow on this graph
to see clearly. In the appendix, we show another version of this graph (Figure AF.15) where the confidence intervals are visible.

We found evidence of substantial demand reduction during the Saving Session, and (as discussed immediately
above) a much smaller but still meaningful demand reduction just before and just after. There may still be demand
displacement to the half-hours overnight or the day before or after a Saving Session, but we did not believe our
DiD approaches were robust to detecting such displacement, as opposed to potentially small but meaningful time-
varying differences unrelated to Saving Sessions in the groups’ overnight consumption.

Finally, we looked at Saving Sessions’ impact on daily consumption in Table 5. This was theoretically a direct
way to answer whether Sessions caused demand displacement or destruction. Our goal was to examine whether
Saving Sessions were associated with lower daily consumption above and beyond the direct impact during the
Session, indicating demand destruction plus spillover destruction; lower daily consumption of similar magnitude
to the impact during the Session, suggesting a simple demand destruction story; no change in daily consump-
tion, suggesting simple demand displacement; or higher daily consumption, suggesting demand displacement
and some extra creation. However, our daily consumption regression was less precise than our analyses of half-
hourly consumption. While we saw a null result in our three DiDs (examining the ITT effect, diluted by incomplete
opt-in and, for the Octopus versus Bulb DiD, sign-up), the 95% confidence interval is consistent with any of the
four stories. The point estimate and therefore the weight of the confidence interval is consistent with substantial
demand destruction – greater than the impact during the 2-4 Saving Session half-hours we identify in our primary
analyses above of≈0.2 kWh / Saving Session42 – but the effect was too noisy to enable firm conclusions about effect
magnitude or even direction.

42We refer here to the estimated impact of sign-up of 0.09kWh per half-hour, from our ITT derived in our Signed Up Early versus Never
DiD; and our LATE of 0.1 kWh per half-hour from our LATE on sign-up from our Octopus versus Bulb DiD. Eleven of the 13 Saving Sessions
had two half-hours, while one had three and one had four.
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Table 5: Impact of Saving Sessions on the day of Session (kWh per day).

ITT 95% CI Mean kwh per day on
SS days, among “con-
trol” group

ITT as % of mean

Signed Up versus
Never

-0.3769 (0.205) [-0.78, 0.026] 21.298 -1.77%

Octopus versus Bulb -0.4169 (0.227) [-0.861, 0.027] 19.3635 -2.15%

Note: Coefficient (and standard errors, in parentheses) on difference-in-differences of our Signed Up Early versus Never and Octopus versus
Bulb DiD (ITT effects, diluted by incomplete opt-in, and in the latter DiD incomplete sign-up). The post-treatment period in each regression is
customers’ average daily consumption on the days of Saving Sessions. The pre-treatment period is daily consumption on weekdays in October
2022 and the first two weeks of November 2022 (before the first Session on November 15, 2022).

3.2.3 Conditional Average Treatment Effects

We examined how the DiD estimates vary by observable customer characteristics, identifying Conditional Average
Treatment Effects (CATEs) using Equation (16). As we see in Section AT.3, treatment effects were higher for
customers from lower-deprivation postcodes, thosewith higher estimated annual consumption, and those on smart
tariffs. However, even the groups with lower treatment effects still showed large, economically meaningful effects
of participating in Saving Sessions. For example, looking at the CATEs in the first difference-in-differences strategy
(Signed Up Early versus Never), the change in demand for customers on smart tariffs was -0.1395 kWh (25.0%
of the during-Session half-hourly consumption of non-signed-up customers on smart tariffs). This extra 0.0514
kWh is a meaningful and and statistically significant difference from customers not on smart tariffs. However,
the -0.0881 kWh demand change among customers not on smart tariffs (representing 19.8% of the during-Session
half-hourly consumption of non-signed-up customers on non-smart tariffs) was still substantial and indeed close
to the overall Average Treatment Effect of -0.0897 kWh. Similarly, the CATE for customers in very low deprivation
postcodes was -0.1059 kWh (-22.7% of during-Session consumption of non-signed-up customers from very low
deprivation postcodes), while the CATE for customers in very high deprivation postcodes was -0.0644 kWh (-
17.2% of during-Session consumption of non-signed-up customers from very high deprivation postcodes). This
difference was meaningful and statistically significant, but the demand reduction among customers in very high
deprivation postcodes was still substantial. Finally, there was some heterogeneity with respect to customer EPC
letter grade, but the effects were not monotonic; lower-grade homes showed higher demand reduction than homes
with grades B, C, and D, but so do A-grade homes.

3.2.4 Mechanisms of Energy Reduction During Saving Sessions

As we describe fully in Section AI.2, we invited 55,000 randomly-chosen signed-up customers to answer questions
about their experience of Saving Sessions. In total, 5,751 customers responded. To better understand the behavioral
mechanisms of energy reduction, we asked survey respondents who opted into Saving Sessions “What best de-
scribes how you participated?” and provided them with a series of non-mutually-exclusive responses. Customers
could “tick” agreement with as many of the responses as they wished. 75% of respondents indicated that they
engaged in manual demand shifting in that they “manually switched off appliances during the Session and used
them at other times”. A much smaller group (i.e,. 22% of respondents) indicated that they incorporated scheduled
demand shifting, agreeing to either (or both) of the response options “scheduled my appliances (like the tumble
dryer) to come on before the Session” and/or “scheduled my appliances (like the tumble dryer) to come on after
the Session”. Note that we observed that these proportions did not vary much by subgroup: manual methods of
demand shifting were more frequent then scheduled techniques amongst all sub-populations we examined. How-
ever, survey respondents on smart tariffs and those with higher estimated annual electricity consumption didmore
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scheduling of appliances (Figures AF.20 and AF.21). We observe little difference on these measures in relation to
customers’ postcode-level deprivation (Figure AF.22).

4 Optimal Peak-Pricing Campaign Design

Figure 8: Distribution of the time at which an Octopus Energy customer was sent their first (possibly only) opt-in
notice for the Saving Session on February 13, 2023.

Note: Shaded region denotes the window of time on which our analysis of energy consumption is concentrated and corresponds to roughly
22:57 on the 12th to 23:01 on the 13th (see Section 4.2 on “bandwidth”). For our analysis of agreement to participate in the 10th Saving Session
we used a window of time corresponding to roughly 22:29 on the 12th and 10:52 on the 13th.

We now turn to our investigation of the design of peak-pricing campaigns, where we wish to know how transmis-
sion systems operators and utility firms might craft these initiatives to maximize their impact on energy behavior.
Here we focused in particular on the broad timing (i.e., When?) of Octopus Energy’s appeals to its customers to
flexibly use electricity and the general channel through which these appeals were made (i.e., their “type”; e.g.,
email versus SMS). And we probed the causal impact of these characteristics on: (a) levels of in-Session consump-
tion; and (b) the probability of Session participation.

4.1 Early Versus Late Timing of Saving Session Notices

First, we considered the causal impact of receiving an intraday opt-in notice as opposed to a day-ahead notice.
The manner in which opt-in notices were sent for the Saving Session on February 13 (17:30 to 18:30) was not
random. However, the unexpectedly-delayed time-ordered dispersal of notices (Figure 8), which we discussed in
Section AI.8, was amenable to a regression discontinuity design (RDD).

Regression discontinuity (RD) is a quasi-experimental method used to analyze observational data where the
mechanism by which a treatment, policy, or exposure was assigned (i.e., administered) is entirely known but
there is no randomization. Specifically, given some “assignment” variable A (here, an Octopus Energy customer’s
account ID) used to administer some treatment z (here, intraday opt-in notice) to individuals i ∈ N (here, all DFS-
participating Octopus Energy customers as of February 12, 2023), RD is used to compare individuals whose values
for the assignment variable Ai fall “just above and just below” a predetermined cut-off C. With some additional
assumptions, and if individuals just above the cut-off (Group 1) and just below the cut-off (Group 2) are similar,
a causal comparison can be made between the two groups with respect to an outcome of interest (here, in-Session
consumption and Session participation).
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We used a temporal cut-off CTime equal to 08:00 on February 13, 2023 — where Octopus Energy customers sent
opt-in notices at or after this time were assigned to our treatment group (i.e., receipt of an intraday notice as
opposed to a day-ahead notice). Because our cutoff for treatment was temporal and not a specific account ID, we
had to map our cutoff to an integer value reflective of the scale and the ordering of Octopus Energy customers’
account IDs. We did this by selecting a window of time around 08:00— i.e., one second—and identifying the single
account ID closest to our temporal threshold when approaching from the left and the single account ID closest to
our temporal threshold when approaching from the right based on the timestamp for when Octopus Energy sent
each signed up customer their first (possibly only) opt-in notice.43 We then summed these account IDs and divide
by the value of two to construct our ID-based cutoff for treatment CID.

Our constructed ID-based threshold CID = “2,454,839”. Account IDs ranged in size from “2” to “5,863,115” in
our sample of 621,204 Octopus Energy customers who had signed up to participate in Saving Sessions by February
12 and for whom Octopus Energy tracked during the February 13, 2023 Saving Session. The constructed account
ID of “2,454,839” was used as our “sharp” threshold for receipt of intraday notices. This threshold was “sharp” as
only account IDs greater than or equal to “2,454,839” were regarded as receiving treatment (i.e., intraday notice).

It would have been impossible for Octopus Energy customers to manipulate their account ID as this would
be tantamount to strategically modifying creation of their Octopus Energy account in relation to our threshold.
Indeed, there was no way for Octopus Energy customers to influence their treatment assignment as CTime and, by
extension, CID were determined and only known by the authors of this research in relation to Octopus Energy’s
policy around the times atwhich customer communication is avoided (i.e., between 20:00 and 08:00). Furthermore,
owing to our data on the time at which opt-in notices were sent by Octopus Energy, we know precisely which
customers received treatment given our threshold— assuming, of course, that sent notices are actually received and
read (i.e., full compliance).

Note that 11,673 of the 621,204 DFS-participating customers whom Octopus Energy tracked during the Febru-
ary 13, 2023 Saving Session were sent opt-in notices “overnight” (i.e., after 23:00 on February 12 but before 08:00
on February 13). We excluded these participants from our models owing to concerns about the stable unit treat-
ment value assumption (i.e., “no hidden versions of treatments”; Gelman et al. (2020)). This exclusion was done
under the assumption that overnight opt-in notices resulted in a fundamentally distinct treatment compared to the
receipt of an intraday notice during working hours. And it resulted in a sample size of 609,531 DFS-participating
customers.

Removing Octopus Energy customers who received their first opt-in notice overnight necessarily resulted in
what econometricians call a “donut-hole” regression discontinuity design (Barreca et al., 2011, 2016). In a donut-
hole RDD, all observations with scores on the assignment variable Ai within some range immediately around the
cutoff are excluded. Typically, excluding study units in thismanner is done to address “heaping” (i.e., non-random
clustering of observations at points along the observed range or “support” of the running variable). However,
donut-hole RDD is an elegant means of handling overnight notices. That said, while notice timing was clustered
due to Octopus Energy’s batched dispersal of messages based on account IDs (see Section AI.8), we did not see
evidence of heaping in relevant pre-treatment covariates across the range of our running variable using the visual
diagnostic (Figure AF.16) recommended by Barreca et al. (2016).

Finally, becauseCTime = 08:00, our samplewas asymmetric around our ID-based cutoffCID to the left (Figure 8).
Put alternatively, we exclude study units with values for the assignment variableA that fell immediately belowCID
(i.e., when Ai less than “2,454,839”) whilst retaining observations to the immediate right of the cutoff.44

43Notice “sent at” timestamps measured to the millisecond.
44There have been important methodological advances around regression discontinuity with multiple cut-offs (see Cattaneo et al. (Forth-

coming)). However, we opted for a simpler analysis by limiting our attention to a comparison of intraday versus day-ahead opt-in notices. We
did so as this comparison is most relevant to practical applications of our research by energy retailers and transmission system operators. This
was because these institutions are likely to limit their interaction with consumers during unsociable, non-working hours.
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4.2 Regression Discontinuity Design: Methods

Exclusion of the 11,673 Octopus Energy customers sent overnight opt-in notices resulted in two groups divided by
a sharp, account-ID-based discontinuity at CID = 2,454,839. Thus, Pr(zi = 1|Ai ≥ CID) = 1 and Pr(zi = 1|Ai <

CID) = 0. In this respect, treatment status zi was fully determined by Ai.
Crucially, we assumed that Octopus Energy customers with values for the assignment variable Ai that fell on

either side of the cut-offCID within a restricted range or “bandwidth” of account IDs h— i.e.,CID−hLeft andCID+hRight
— were broadly “similar”. That is to say, we assume that Octopus Energy customers very near to our cutoff had
distributions of potential outcomes under treatment (i.e., y1) and distributions of potential outcomes under no
treatment (i.e., y0) that were nearly equivalent conditional on Ai and possible confounders x (i.e., third variables
determinant of both the observed outcome y and assignment A, and thus z).

This assumption is sometimes called “no confounders vary discontinuously across the threshold” Gelman et al.
(2020, p. 438), however, it is a form of conditional ignorability Gelman et al. (2020, p. 438) in the following style:

y0, y1 ⊥ z | A, x ∀ A ∈ (CID − hLeft, CID + hRight). (17)

This assumption is expected to approximately hold when the bandwidths hLeft and hRight are small. Thus, there
is generally a trade-off between the plausibility of this assumption and the sizes of hLeft and hRight, and, in turn,
the number of observations N used for model fitting (see Cattaneo et al. (Forthcoming) on justification of the
“local randomization” RDD). Accordingly, and in keeping with standard practice across the academic literature,
we relaxed the above assumption by narrowly focusing on estimating the causal effect of an intraday notice at the
ID-based threshold — i.e., the causal effect when Ai = CID — which is a kind of local average treatment effect
(LATE).45

Specifically, we estimated an ordinary-least-squares (OLS) regression model with the following general form:

yi = β0 + β1zi + β2(Ai − CID) + β3(zi × (Ai − CID)) +Xiβ⃗ + ϵi

∀ Ai ∈ (CID − hLeft, CID + hRight),
(18)

where CID = 2,454,839, z was our binary treatment indicator (i.e., intraday notice versus day-ahead notice)
which equaled the value of one when Ai ≥ CID, and (Ai − CID) was the assignment variable (i.e., account ID)
relative to the cutoff. This relative quantity equals zero when Ai = CID such that zi = 1 when (Ai − CID) ≥ 0.
Furthermore, X is a 1 × p matrix containing p pre-treatment covariates and/or confounders x believed to jointly
determine both the potential outcomes (y0, y1) and A for study units i ∈ N (Table AT.25) — with hLeft and hRight
defining the bandwidth of account IDs used for model fitting.

Moreover, (β0) and (β0+β1) are, respectively, the expected value of the response y at the threshold for customers
for whom zi = 0 and for whom zi = 1. Thus, β1 is the LATE at the threshold— i.e., (β0+β1)− (β0) or the expected
difference or “jump” in the outcome between customers for whom zi = 1 and customers for whom zi = 0.

In Section AI.8.2, we also discuss our general model specification and the technique we use to estimate optimal,
asymmetric bandwidths hLeft and hRight given our use of donut-hole RDD. Optimal bandwidths are specific to each
of our two outcome variables (i.e., session consumption and session participation). For session consumption, the
lower bandwidth bound (C − hLeft) roughly corresponded to 22:57 on the 12th and the upper bandwidth bound
(C + hRight) roughly corresponded to 11:01 on the 13th (Figure 8 and Figure AF.16). For session participation, the
lower and upper bounds roughly corresponded to 22:29 on the 12th and 10:52 on the 13th.

45Here we describe the sharp RDD estimand as a “LATE”, however, one might also conceive of this estimand as a conditional average
treatment effect or “CATE” owing to estimation of the causal quantity among a specific subset of individuals — namely those with values for
the running variable Ai that are near the cutoff C. Nevertheless, we use “LATE” to emphasize the estimation of a causal effect at a particular
point along the range of our running variable.
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Table 6: Results for Regression Discontinuity Design.

MSE-Optimal Bandwidth (hLeft, hRight) (hL;, hR) (hL, hR) (hL×1.5, hR×1.5) (hL×2, hR×2) hL Only

β̂ Intercept 0.566 (0.024) 0.588 (0.020) 0.609 (0.012) 0.628 (0.009) 0.613 (0.006)

β̂ Intraday Opt-in Notice 0.060 (0.025) 0.042 (0.021) 0.028 (0.012) 0.003 (0.010) —
β̂ Intraday Opt-in Notice (07:59:59, 09:00:00] — — — — 0.009 (0.008)
β̂ Intraday Opt-in Notice (09:00:00, 10:00:00] — — — — 0.012 (0.008)
β̂ Intraday Opt-in Notice (10:00:00, 11:00:00] — — — — 0.026 (0.007)
β̂ Intraday Opt-in Notice (11:00:00, 12:00:00] — — — — 0.037 (0.007)
β̂ Intraday Opt-in Notice (12:00:00, 13:00:00] — — — — 0.056 (0.008)

Pre-treatment Covariates? No Yes Yes Yes Yes
Observations 78,724 69,168 116,973 160,169 350,361
Estimator OLS OLS OLS OLS OLS
Heteroscedasticity-Consistent Std. Errors (HC0) True True True True True
R2

Adj. 0.000 0.309 0.308 0.981 0.961
(a) Models of total consumption (kWh) during the 10th Saving Session.

MSE-Optimal Bandwidth (hLeft, hRight) (hL;, hR) (hL, hR) (hL×1.5, hR×1.5) (hL×2, hR×2) hL Only

β̂ Intercept 0.563 (0.007) 0.566 (0.006) 0.563 (0.005) 0.558 (0.004) 0.576 (0.003)

β̂ Intraday Opt-in Notice 0.002 (0.008) -0.014 (0.008) -0.017 (0.005) -0.010 (0.005) —
β̂ Intraday Opt-in Notice (07:59:59, 09:00:00] — — — — -0.026 (0.005)
β̂ Intraday Opt-in Notice (09:00:00, 10:00:00] — — — — -0.036 (0.005)
β̂ Intraday Opt-in Notice (10:00:00, 11:00:00] — — — — -0.045 (0.004)
β̂ Intraday Opt-in Notice (11:00:00, 12:00:00] — — — — -0.055 (0.004)
β̂ Intraday Opt-in Notice (12:00:00, 13:00:00] — — — — -0.053 (0.005)

Pre-treatment Covariates? No Yes Yes Yes Yes
Observations 99,678 88,422 142,509 186,790 377,569
Estimator OLS OLS OLS OLS OLS
Heteroscedasticity-Consistent Std. Errors (HC0) True True True True True
R2

Adj. 0.001 0.224 0.221 0.219 0.215
(b)Models of the probability of opting into the 10th Saving Session.

Note: The table presents parameter estimates and standard errors (parentheses) for the LATE (β̂ Intraday Opt-in Notice [Ref Day-ahead
Notice]), and the expected average outcome in the control group (β̂ Intercept) from models fit to subsets of our Saving Session data using
asymmetric bandwidths hLeft and hRight optimised to reduce mean-squared error (MSE) (see Section AI.8.2). Hour-specific CATEs (β̂ Intraday
Opt-in Notice (Time Range]) are from amodel fit to a subset of our data obtained using only the left MSE-optimal bandwidth. Results rounded
to three decimal places. See Long and Ervin (2000) for a discussion and comparison heteroscedasticity-consistent covariance matrices. For
complete results depicting all covariates, see Tables AT.26 and AT.27. See Table AT.25 for descriptive statistics and reference categories.

4.3 Regression Discontinuity Design: Results

In this section, we present the causal effect (i.e., LATE) of receiving an intraday opt-in notice (i.e., β̂ Intraday
Opt-in Notice) from models of total consumption (kWh) during, and formal agreement to participate in, the 10th
Saving Session on February 13, 2022. Our simplest model of consumption used our standard pair of bandwidths
(i.e., hLeft and hRight) and excluded pre-treatment covariates (in Table 6a). The OLS estimate of the LATE in this
model indicated that Octopus Energy customers sent an intraday notice used, on average, 0.06 kWh more (β̂ =

0.060; 95% CI = [0.011, 0.108]; p-value = 0.016) during the Saving Session compared to Octopus Energy customers
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sent a day-ahead notice — the latter of whom had an estimated average consumption of 0.566 kWh (β̂ Intercept =
0.566; 95% CI = [0.519, 0.613]; p-value < 0.001). Put alternatively, there was compelling evidence to reject the null
hypotheses of no association between our notice-based treatment and consumption, where our simplest models
indicate that consumption on the part of customers sent a day-of notice was higher by 10.6% (i.e., 0.06 ÷ 0.566).46
Thus, there is compelling evidence to suggest that being sent an intraday notice had a positive causal impact on
energy consumption during the 10th Saving Session, albeit only for a narrower set of customers receiving notice
within a more restricted temporal window.

As for participation in Table 6b, our simplest linear probability model failed to provide sufficient evidence to
reject the null hypothesis of no association between intraday notice and participation in the 10th Saving Session
(β̂ = 0.002; 95% CI = [−0.013, 0.018]; p-value = 0.767). A null result was also found in our expanded model (β̂ =

-0.014; 95% CI = [−0.029, 0.001]; p-value = 0.067). However, when we widened the range of account IDs under
consideration, we did find compelling evidence of an association between day-of notice and participation. This
association is negative (i.e., the probability of Session participation is lower under day-of notice) when we using
an expansion factor of 1.5 (β̂ = -0.017; 95% CI = [−0.027,−0.006]; p-value = 0.002) and a factor of 2 (β̂ = -0.010;
95% CI = [−0.019,−0.0002]; p-value = 0.046).

ContextualizingDemandReduction. We also briefly considered treatment-effect heterogeneity in relation to the
timing of intraday notice using a pair of ancillarymodels given in the right-most columns of Tables 6a and 6b. Recall
that our binary indicator for intraday notice covered all notices sent roughly between 08:00 and 22:30 on February
13 (Figure 8). This leads to a comparison between customers sent notice within thirty minutes of 23:00 the day
prior (i.e., the control group; Figure 8) and customers sent day-of notice over multiple hours across the morning
of the 10th Saving Session. Accordingly, we explored whether our results might be consistent throughout the
morning-to-afternoon period by fitting two additional models wherein we swapped our singular binary indicator
for intraday notice with a series of binary indicators for the 60-min periodwithin which day-of notice was sent (i.e.,
every hour from 08:00 and 13:00, the latter of which was the cut-off for the sending of opt-in notice on February
13).

We approach this RDD through the lens of a standard observational study wherein we wished to estimate a
causal effect by adjusting for all confounders (Gelman et al., 2020, p. 437). Thus, we assumed that, conditional
on an array of pre-treatment covariates — most importantly customer tenure (Figure AF.16) — assignment to
the control group or to the hour-specific treatment groups was independent of the potential outcomes within a
restricted range of our running variable (see Equation (17) as well as Cattaneo et al. (Forthcoming) on “local
randomization”). Put simply, we assumed ignorability of the hour-specific notice-based treatments conditional
on tenure for a limited range of account IDs, amongst other factors. We estimated our two ancillary models by
filtering our data using only our lower bandwidth bound (CID − hLeft) such that all customers with account IDs
Ai greater than (CID − hLeft) were used for model fitting. Thus, we continued to use as a control group customers
sent notice between roughly 22:30 and 23:00 on February 12.

Note that this version of our RDD focuses on the average difference between the control and treatment groups
for sub-groups defined by ranges of our running variable (i.e., Conditional ATEs or CATEs) as opposed to the
causal effect at the cutoff CID (i.e., the LATE) or the causal effect across our entire sample from the population
of Octopus customers (i.e., the ATE). Thus, we necessarily assume that the regression function is constant for
the entire region of our running variable within which (conditional) ignorability is expected to hold (Cattaneo

46Note, however, that the OLS estimate of the LATE was sensitive to model specification. Specifically, it was attenuated in the presence of
pre-treatment covariates (β̂ = 0.042; 95% CI = [0.002, 0.083]; p-value = 0.041). In contrast, when we expanded our bandwidth by a factor of
1.5, the LATE further shrinks in magnitude (β̂ = 0.028; 95% CI= [0.004, 0.053]; p-value= 0.023). And, when we expanded our bandwidth by
a factor of two, we no longer observed compelling evidence to suggest that our notice-based treatment impacts consumption (β̂ = 0.003; 95%
CI = [−0.016, 0.023]; p-value = 0.743).
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Table 7: RDD-based LATE of intraday notice on total consumption (kWh) during the 10th Saving Session versus
the ITT and the LATE for demand reduction during the same event obtained using DiDs.

RDD LATE Conditional on Pre-Treatment Covariates? No Yes

β̂LATE Intraday Opt-in Notice [Ref. Day-ahead Notice] 0.060 (0.025) 0.042 (0.021)

β̂ITT Signed-up [Ref. Signed Up Never] -0.151 (0.003) -0.151 (0.003)
β̂LATE Intraday Opt-in Notice as % of β̂ITT Signed-up -39.74% -27.81%

β̂LATE (Sign-up) Octopus Customers [Ref. Bulb Customers] -0.168 (0.005) -0.168 (0.005)
β̂LATE Intraday Opt-in Notice as % of β̂LATE (Sign-up) Octopus Customers -35.71% -25.00%

Note: We multiplied the Session-specific DiD coefficients and their standard errors from Table AT.2 by two as the Saving Session on February
13, 2023 lasted two half-hours whereas the DiDs relate to average half-hourly electricity consumption. We then calculated the size of the effect of
“intraday” notice we identified from our RDD (from our model without covariates, and with) as a percent of the demand reduction identified
by the DiDs. The Signed Up Early versus Late DiD does not produce Session-specific estimates for Sessions in February and March 2022, as
the control group for the Signed Up Early versus Late DiD comes from customers who joined in February and March 2022; for this reason,
we only show the results as a percent of our Signed Up Early versus Never and Octopus versus Bulb DiDs. We found that depending on the
model, the impact of intraday notice was 25-39% of the overall Sessions demand reduction signed-up customers achieved – dampening but not
eliminating customers’ flexibility response.

et al., Forthcoming, Ch. 2) such that standard analytic techniques (e.g., a simple difference of means) can be
used (Cattaneo et al., Forthcoming, Gelman et al., 2020). Accordingly, our two ancillary models were estimated
after dropping from the linear predictor account ID and the multiplicative interaction between intraday notice and
account ID. The hour-specific CATEs (rightmost columns in Tables 6a and 6b) were generally consistent with the
OLS estimates of the LATE from our main models in terms of their sign, where the hour-specific CATEs in both
our model of consumption and our model of participation generally grow in magnitude over time.

We next contextualize our overall and our hour-specific treatment effects for consumption (Table 6a) using
results from our DiD designs (Section 2.4.2). Specifically, we show in Tables 7 and 8, the percent of in-Session
demand reduction represented by these quantities which we derived by dividing our RDD’s LATE for intraday
notice, as well as the separate hour-specific CATEs, by the demand reduction associated with sign up that we esti-
mated using our DiD designs(Table AT.2).47 We found that the impact of intraday notice was 25-39% of the overall
in-Sessions demand reduction signed-up customers achieved according to our DiD designs (Table 7) – dampening
but far from eliminating customers’ flexibility response. That said, we note that we prefer the RDD-derived LATE
of intraday notice estimated while adjusting for possible confounds (β̂ = 0.042; 95% CI = [0.002, 0.083]; p-value =
0.041) which we expect to add precision and improve the model’s internal validity. When we divide the this point
estimate by the LATE for signing up to taker part in DFS events obtained using our third DiD strategy (Octopus
Customers vs. Bulb Customers), we see a 25% dampening of demand reduction.48 As for the hour-by-hour CATEs
as a percent of overall DiD-estimated demand reduction (Table 8), we found a notice period elasticity of 0.7 to 0.8,
depending on which model we used to estimate in-Session demand reduction from signed up customers. In other
words, for each 1% reduction in notice period, we saw a 0.7 to 0.8% dampening of the demand response customers
achieve.

47Recall that our secondDiDdesign (i.e., SignedUpEarly vs SignedUpLate) does not produce Session-specific estimates for Saving Sessions
in February and March 2023. For this reason, we only show the CATE as a percent of the causal effects obtained using our Signed Up Early vs.
Never DiD design and our Octopus vs. Bulb DiD design.

48There is extremely minimal risk of Bulb customers choosing Bulb as their supplier in anticipation of DFS. In addition recall from Sec-
tion 2.4.2 that, for multiple reasons, Bulb customers are a “natural” counterfactual group for Octopus Energy customers invited to participate
in the DFS.
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Table 8: Hour-specific elasticities (regression discontinuity design versus DiD designs).

Hours Before Session Start β̂CATE Intraday Notice as % of β̂ITT Signed-up % Notice Period Reduced Elasticity

08:00 to 09:00 (9.5 hrs before) -5.96% (0.009 [0.008] ÷ -0.151 [0.003]) 0.00% ((9.5 - 9.5) ÷ 9.5) —
09:00 to 10:00 (8.5 hrs before) -7.95% (0.012 [0.008] ÷ -0.151 [0.003]) 10.53% ((9.5 - 8.5) ÷ 9.5) -0.75 (-7.95% ÷ 10.53%)
10:00 to 11:00 (7.5 hrs before) -17.22% (0.026 [0.007] ÷ -0.151 [0.003]) 21.05% ((9.5 - 7.5) ÷ 9.5) -0.82 (-17.22% ÷ 21.05%)
11:00 to 12:00 (6.5 hrs before) -24.50% (0.037 [0.007] ÷ -0.151 [0.003]) 31.58% ((9.5 - 6.5) ÷ 9.5) -0.78 (-24.50% ÷ 31.58%)
12:00 to 13:00 (5.5 hrs before) -37.09% (0.056 [0.008] ÷ -0.151 [0.003]) 42.11% ((9.5 - 5.5) ÷ 9.5) -0.88 (-37.09% ÷ 42.11%)

(a) Elasticity given demand reduction estimated using the first DiD design (Signed Up Early vs. Signed Up Never).

Hours Before Session Start β̂CATE Intraday Notice as % of β̂LATE Octo. Cust. % Notice Period Reduced Elasticity

08:00 to 09:00 (9.5 hrs before) -5.37% (0.009 [0.008] ÷ -0.168 [0.005]) 0.00% ((9.5 - 9.5) ÷ 9.5) —
09:00 to 10:00 (8.5 hrs before) -7.16% (0.012 [0.008] ÷ -0.168 [0.005]) 10.53% ((9.5 - 8.5) ÷ 9.5) -0.68 ( -7.16% ÷ 10.53%)
10:00 to 11:00 (7.5 hrs before) -15.51% (0.026 [0.007] ÷ -0.168 [0.005]) 21.05% ((9.5 - 7.5) ÷ 9.5) -0.74 (-15.51% ÷ 21.05%)
11:00 to 12:00 (6.5 hrs before) -22.08% (0.037 [0.007] ÷ -0.168 [0.005]) 31.58% ((9.5 - 6.5) ÷ 9.5) -0.70 (-22.08% ÷ 31.58%)
12:00 to 13:00 (5.5 hrs before) -33.41% (0.056 [0.008] ÷ -0.168 [0.005]) 42.11% ((9.5 - 5.5) ÷ 9.5) -0.79 (-33.41% ÷ 42.11%)
(b) Elasticity given demand reduction estimated using the third DiD design (Octopus Customers vs. Bulb Customers).

Note: Here we report the hour-by-hour notice period “elasticity” using the hour-specific treatment effects β̂CATE Intraday Opt-in Notice (Time
Range] (standard errors in brackets) from Table 6, the Session-specific intent-to-treat effect β̂ITT Signed Up Early (Ref. Signed UpNever) using
our first DiD strategy (Table AT.2) and the Session-specific LATE β̂LATE (Sign-up) Octopus Customers (Ref. Bulb Customers) from our third DiD
strategy (Table AT.2). To calculate the “elasticity” for a given sixty-minute period, we first divide the corresponding hour-specific CATE by the
demand reduction reflected in either the ITT effect (Table 8a; i.e., the causal effect of eligibility for Sessions participation on average half-hourly
consumption during the February 13 Saving Session) or the LATE (Table 8b; i.e., the causal effect of signing-up to the DFS itself on average half-
hourly consumption during the February 13 Saving Session among customers who’s sign-up behaviour was influenced by the DFS invitation).
After multiplying by 100, this division (second column) provides us with the percent reduction in demand during the February 13 Saving
Session associated with receiving notice one additional hour after the 08:00 to 09:00 period. Next (third column), using 9:00 as a baseline, we
calculate the percentage reduction in the overall notice period (08:00 to 13:00) incurred by receiving notice one additional hour after the 08:00
to 09:00 period. Then, to calculate the hour-specific “elasticity” (fourth column), we simply divide the percentage of the estimated reduction
in demand that is associated with receiving notice two, three, four, of five hours after the 08:00 to 09:00 period (according to our RDD) by the
percentage reduction in the overall notice period due to the elapsing of two, three, four, of five hours. Session-specific DiD effects and their
standard errors (brackets; second column) are multiplied by two as the Saving Session on February 13, 2023 lasted two half-hours.

4.4 Timing and Type of Supplementary Saving Session Notices

Here we further consider the causal impact of opt-in notice timing using a randomized field experiment based on
an inversion of the customer-messaging set-up used for the February 13 quasi-experiment discussed in Section 4.1.

Our field experiment concerned 650,809 Octopus Energy customers who had signed up to participate in Saving
Sessions by March 14 and whom Octopus Energy tracked during the Saving Session on March 15 (18:30 to 19:30).
Unlike the other Saving Sessions throughout the Winter of 2022-23, all 650,809 customers were sent intraday opt-in
notices for the March 15 Session. Accordingly, for our field trial, we randomly selected a subset of customers to
receive supplementary messaging and, in some cases, a supplementary price incentive on top of the standard intraday
notice.

Of the 650,809 Octopus Energy customers, 19,182 were randomly assigned to receive a day-ahead “heads-up”
email on March 14 (Figure 9). We refer to this notice as a “heads-up” email as those in receipt of this message
could not use it to formally agree to participate in the Saving Session on March 15 (c.f. opt-in notices). Indeed, the
heads-up email only informed DFS-participating Octopus customers about the upcoming Saving Session and its
general importance. Distribution of the day-ahead heads-up email wasmanaged using a third-party platform (i.e.,
“SendGrid”) that is operationally distinct from Octopus Energy’s internal customer-messaging platform used to
send the intraday notices (Section AI.8).
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Figure 9: Day-ahead “heads-up” email sent to customers to raise awareness about an upcoming Saving Session.

Note: Octopus Energy sent day-ahead notices to a randomly chosen group of customers sent on March 14, 2023. This email effectively let them
know of the possibility of an incoming Saving Session on the next day; they were also required to opt-in to the session held on March 15, 2023.

Furthermore, 19,220 of the 650,809 Octopus Energy customers were randomly assigned to receive an intraday
“reminder” SMS text message on March 15. And these 19,220 customers were made eligible for a performance-
related bonus price incentive of 1,000 “OctoPoints” worth £1.25. Like the heads-up email, the SMS reminder text
raised awareness of the upcoming Saving Session. However, customers in receipt of a text may have already re-
ceived primary notice (hence, “reminder”). Furthermore, the SMS text disclosed the level of bonus on offer subject
to positive session performance.49 Owing to its short length, the SMS text did not reference the general importance
of Saving Sessions. The exact SMS text was as follows:

“SAVING SESSION TODAY 1830-1930. SPOT PRIZE: Octobot has chosen you at random to win 1000
OctoPoints if you save energy in tonight’s Session. Opt in before 1830!”

Thus, our field experiment has three experimental conditions:

1. Control Group (N = 627,155): Intraday Opt-in Notice Only
2. Treatment Group 1 (N = 19,182): Intraday Opt-in Notice plus Day-ahead “Heads-up” Email
3. Treatment Group 2 (N = 19,220): Intraday Opt-in Notice plus Intraday “Reminder” SMS Text plus Eligibility

for £1.25 Bonus

Two factors made random assignment of our second treatment imperfect. First, some customers assigned to the
SMS-plus-bonus condition had disallowed SMS communications from Octopus Energy. Second, we were unable
to send SMS texts to every customer assigned to the SMS-plus-bonus condition who had allowed SMS messages
from Octopus Energy.

Specifically, we were limited to sending intraday SMS texts to a maximum of 5,000 Octopus Energy customers.
In total, 4,731 of the 19,220 Octopus Energy customers assigned to the SMS-plus-bonus condition did not allow

49Performance was deemed positive when a customer’s in-Session consumption was less than their P376 (“clipped”) baseline consumption
with in-day adjustment.
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SMS texts from Octopus Energy. Of the remaining 14,489 customers who did allow SMS communications, 4,472
were randomly sub-sampled to receive an intraday SMS reminder. Thus, there were 14,748 customers (i.e., 4,731 +
10,017) assigned the second treatment who did not actually receive the second treatment. Nevertheless, all 19,220
customers assigned to the SMS-plus-bonus condition were made eligible to receive the bonus price incentive re-
gardless of whether they disallowed SMS communications from Octopus Energy and irrespective of whether they
were a part of the random sub-sample. In these respects, our second treatment suffers from imperfect compliance.

Wewere interested in the causal effect of actually receiving an intraday SMS text— again assuming, similarly to
our RDD, that sent notices are actually received. Thus, our binary indicator for the second treatment only reflected
the 4,472 Octopus Energy customers who had allowed SMS communication from Octopus Energy and who were
sent an intraday SMS reminder after random sub-sampling. Consequently, the 4,731 customers who had disal-
lowed SMS communication and the 10,017 customers who had allowed SMS communication but who were not
randomly sub-sampled were only included in our binary indicator for eligibility for our second treatment.

Note well that these 14,748 customers only received the intraday email. And they were not made aware of
their eligibility for the bonus price incentive unless they met the bonus criterion by the end of the Saving Session
— where winnings were disclosed after the Session. If these individuals had been informed, it would represent a
distinct form of treatment and it would have been prudent to create a fourth treatment group for “intraday notice
plus bonus eligible”. But this was not the case.

Keeping all of this in mind, we drew the following contrasts across the 650,809 Octopus Energy customers who
had signed up to participate in DFS events by March 14 and for whom Octopus Energy tracked during the March
15 Saving Session as a part of our field experiment:

1. Intraday Opt-in Notice + Day-ahead “Heads-up” Email (Treatment Group 1) vs. Intraday Opt-in Notice
Only (Control Group)

2. Intraday Opt-in Notice + Intraday “Reminder” SMS Text [Actually Received] + Eligibility for £1.25 Bonus
(Treatment Group 2) vs. Intraday Opt-in Notice Only (Control Group)

Given non-compliance, we adopted the framing of a randomized encouragement design (RED)— i.e., a type of
experimental setup wherein variation in some difficult-to-directly-manipulate treatment is induced using a source
of randomvariation (i.e., the random “encouragement”) that is related to the difficult-to-directly-manipulate treat-
ment and not related to the outcome of interest. Here, our random “encouragement” is our original, explicit random
assignment to the SMS-plus-bonus condition.

Note, due to non-compliance, we could only estimate the complier average causal effect (CACE) for the SMS-
plus-bonus condition. The CACE — itself a kind of LATE — is the causal estimand for customers whose receipt
of an intraday SMS and awareness of their eligibility for the bonus price incentive could be altered by our ran-
domization. This is distinct from the average treatment effect (ATE) which we estimated for the day-ahead-email
condition alongside the CACE using instrumental variable (IV) estimation.

4.5 Field Trial: Methods

We estimated the ATE and the CACE for our supplementary-notice conditions using a two-stage ordinary least-
squares (2SLS) procedure (Gelman et al., 2020, Greene, 2019, Wooldridge, 2010). The first stage (i.e., the first
model) was an OLS regression of our treatment with imperfect compliance TSMS (i.e., a binary indicator for the
4,472 customers who received the SMS-plus-bonus treatment) conditional on our binary random encouragement
ZSMS (i.e., an indicator for the 19,220 customers merely assigned to the SMS-plus-bonus condition). The second
stage (i.e., the second model) was an OLS regression of our outcome y (i.e., in-Session consumption or Session
participation) conditional on the predicted value of TSMS from our first model, i.e., T̂SMS.
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Formally, this combined model for the ATE for the day-ahead-email condition TDay-ahead Email and the CACE for
the SMS-plus-bonus condition TSMS, which we estimate using a joint procedure to correct the standard errors in
the second stage (Gelman et al., 2020), is as follows:

yi = β0 + β1TDay-ahead Email,i + β2T̂SMS,i +Xiβ⃗ + ϵi,y (19a)
TSMS,i = γ0 + γ1TDay-ahead Email,i + γ2ZSMS,i +Xiγ⃗ + ϵi,TSMS , (19b)

where the linear predictor for TSMS (i.e., Equation (19b)) and the linear predictor for yi (i.e., Equation (19a)) are
the first- and second-stage equations, TDay-ahead Email,i is the exogenous binary indicator for treatment one (i.e., day-
ahead “heads-up” email), TSMS,i is the endogenous binary indicator for treatment two for Octopus Energy customers
who received it, T̂SMS is its predicted value, and ZSMS,i is our random instrument/encouragement (i.e., random
assignment to the SMS-plus-bonus condition).

Moreover,X is a 1×pmatrix containing p pre-treatment covariates and/or confounders x believed to jointly de-
termineZSMS,i and the responsepotential outcomes (y0, y1) orZSMS,i and the treatmentpotential outcomes (T 0

SMS, T
1
SMS)

for study units i ∈ N . Accordingly, β⃗ and γ⃗ are p-length vectors of coefficients relating the pre-treatment covari-
ates/confounders to y and TSMS, respectively. Note that we include TDay-ahead Email,i in Equation (19b) in keeping
with typical applications of 2SLS whereby the first- and second-stage linear predictors are identical save for instru-
ment and the associated treatment-with-non-compliance.

Given this set-up, β1 in Equation (19a) is the ATE of the day-ahead condition, β2 in Equation (19a) is the CACE
of the SMS-plus-bonus condition, and γ2 in Equation (19b) captures the expected compliance rate.

Alongside our interrelated regression equations (Equation (19)), we consider a single-equation model akin
to Equation (19a) wherein we replaced the predicted value for actually receiving the SMS-plus-bonus treatment
with a binary indicator for randomized assignment to the SMS-plus-bonus condition. This is the “reduced form”
version of our two-equation model (see Wooldridge (2010, p. 90-91) and Angrist (2006, p. 32-33)) that provides
us with the intent-to-treat (ITT) effect (Gelman et al., 2020, p. 426) — i.e., the effect of merely being eligible for
SMS-based treatment based on our random assignment.
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Table 9: Models of total consumption (kWh) during the 12th Saving Session (field trial).

Equation Reduced Fm. Reduced Fm. Reduced Fm. 1st Stage 2nd Stage 2nd Stage 2nd Stage
Response Variable Consumption Consumption Consumption SMS + £ Consumption Consumption Consumption

β̂ Intercept 0.655 (0.001) 0.656 (0.001) 0.662 (0.001) -0.000 (0.000) 0.655 (0.001) 0.656 (0.001) 0.662 (0.001)

β̂ Day-ahead Email -0.021 (0.006) -0.018 (0.006) -0.011 (0.005) 0.000 (0.000) -0.021 (0.006) -0.018 (0.006) -0.011 (0.005)

β̂ Intraday SMS + £1.25 Ass. -0.007 (0.006) -0.007 (0.006) -0.007 (0.005) 0.228 (0.003) — — —
β̂ Intraday SMS + £1.25 — — — — -0.030 (0.025) -0.033 (0.026) -0.029 (0.021)

Pre-treatment Covariates? No No Yes Yes No No Yes
Listwise Deletion? No Yes Yes Yes No Yes Yes
Observations 638,242 540,395 540,395 540,395 638,242 540,395 540,395
Estimator OLS OLS OLS OLS IV-2SLS IV-2SLS IV-2SLS
Hetero.-Consist. SEs (HC0) Yes Yes Yes Yes Yes Yes Yes
R2

Adj. 0.000 0.000 0.367 0.223 0.000 0.000 0.367
Partial F -Statistic 4728.325
Exogeneity Test p-value 0.433 0.554 0.485

Note: The table presents parameter estimates and standard errors (parentheses) for the ATE (β̂ Intraday Notice + Day-ahead Email [Ref
Intraday Only]), the CACE (β̂ Intraday Notice + Intraday SMS + £1.25 Incentive [Ref Intraday Only]), the ITT (β̂ Intraday SMS + £1.25
Incentive Assigned), and the expected average outcome in the control group (β̂ Intercept) from reduced form ordinary least-squares (OLS)
regression models as well as the 1st and 2nd stages of two-stage-least-squares (2SLS) regression models. “Intraday SMS + £1.25 Incentive
Assigned” is the singular instrumental variable (IV). Results rounded to three decimal places. See Long and Ervin (2000) for a discussion
and comparison heteroscedasticity-consistent covariance matrices. H0 for Wooldridge’s regression text of exogeneity is that the endogenous
variable “Intraday SMS+ £1.25 Incentive Assigned” is exogenous. For complete results depicting all covariates, see Table AT.28. See Table AT.25
for descriptive statistics and reference categories.

Formally, our single-equation model for the ITT is defined as follows:

yi = θ0 + θ1TDay-ahead Email,i + θ2ZSMS Randomly Assigned,i +Xiθ⃗ + ϵi, (20)

where θ1 is the ATE for the day-ahead condition as in Equation (19a), θ2 is the ITT which can be “scaled” (i.e.,
divided) by the compliance rate γ2 in Equation (19b) to produce a Wald-like estimate of the CACE (i.e., β2 in
Equation (19a) (Gelman et al., 2020, p. 426), and X is a N × p matrix containing p pre-treatment covariates.

4.6 Field Experiment: Results

Tables 9 and 11 present three causal effects frommodels of total consumption (kWh) during, and formal agreement
to participate in, the 12th Saving Session onMarch 15. Specifically, we present OLS-based estimates of: (a) the ATE
of receiving a day-ahead heads-up email (i.e., β̂ IntradayNotice +Day-ahead Email); (b) the CACE of receiving an
intraday SMS reminder plus being made bonus-eligible (i.e., β̂ Intraday Notice + Intraday SMS + £1.25 Incentive);
and (c) the intent-to-treat effect (ITT) for the SMS-plus-bonus condition (i.e., β̂ Intraday Notice + Intraday SMS
+ £1.25 Incentive Assigned).

Our simplest 2nd stage model of consumption excluded pre-treatment covariates (Table 9). And the OLS esti-
mate of the ATE from this model indicates that Octopus Energy customers sent a supplementary day-ahead email
used, on average, 0.021 kWh less (β̂ = -0.021; 95% CI= [−0.032,−0.010]; p-value< 0.001) during theMarch 15 Sav-
ing Session compared to customers only sent an intraday notice. On average, among customers who only received
day-of notice, consumption was estimated to be 0.655 kWh (β̂Intercept = 0.655; 95% CI = [0.653, 0.657]; p-value
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< 0.001). Accordingly, the ATE represents a 3.2% (i.e., 0.021 ÷ 0.655) reduction in consumption over baseline.
Thus, we obtained compelling evidence to reject the null hypotheses that the causal association between being
sent a supplementary day-ahead email and in-Session consumption is equal to zero. Nevertheless, the OLS esti-
mate of the ATE of heads-up notice was attenuated in the presence of pre-treatment covariates (β̂ = -0.011; 95% CI
= [−0.021,−0.002]; p-value = 0.021), where this attenuation does not appear to be wholly related to our dropping
of customers with incomplete data for pre-treatment covariates (i.e., listwise deletion).

In Table 10, we contextualized our ATE of the day-ahead email on in-Session consumption (Table 9) using
results from our DiD designs (Section 2.4.2). Specifically, we show the percent of in-Session demand reduction
represented by this quantity which we derived by dividing our field trials’s ATE for the day-ahead email by the
demand reduction associated with sign up that we estimated using our DiD designs(Table AT.2) 50. And, depend-
ing on model, we found that the impact of the day-ahead “heads-up” was 7-19% of the overall in-Sessions demand
reduction signed-up customers achieved. As in Section 4.3, our preferred estimate of the ATE is the version from
our models that adjusts for pre-treatment covariates.

In contrast to our email-based treatment, we found no compelling evidence to suggest that being sent an intra-
day SMS reminderwhile beingmade eligible for the bonus price incentive had a causal impact on consumption dur-
ing the March 15 Saving Session. Specifically, the 1st stage model captured the unsurprising association between
our instrument and our SMS-based treatment with non-compliance (β̂Intraday SMS+ £1.25 Incentive Assigned =

0.228; 95% CI= [0.221, 0.234]; p-value< 0.001) which represents the expected proportion of compliers, conditional
on pre-treatment covariates. Nevertheless, our 2nd stage models used to estimate the CACE failed to provide
sufficient evidence to reject the null hypotheses of no association between our SMS-based treatment and consump-
tion during the 12th Saving Session. This null result is found in our simple 2nd stage model (β̂ Intraday SMS
+ £1.25 Incentive = -0.030; 95% CI = [−0.078, 0.019]; p-value = 0.229) and the variant with pre-treatment covari-
ates (β̂ = -0.029; 95% CI = [−0.070, 0.013]; p-value = 0.172). Along this line, we also failed to find compelling
evidence to reject the null hypotheses that the OLS estimate of the ITT effect is zero — i.e., that mere eligibility
for the SMS-plus-bonus treatment impacts in-Session consumption, conditional on pre-treatment covariates (i.e.,
β̂ Intraday SMS + £1.25 Incentive Assigned = -0.007; 95%CI= [−0.016, 0.003]; p-value= 0.172). TheOLS estimate
of the ITT is unchanged when excluding pre-treatment covariates.

As for participation (Table 11), our simple and expanded 2nd stage models (linear probability sub-models)
both provided compelling evidence of a positive association between our treatments and the likelihood of opting
into the March 15 Saving Session. Specifically, the OLS estimate of the ATE for the day-ahead-heads-up-email
condition from our simplest model without listwise deletion (β̂ = 0.026; 95% CI = [0.019, 0.033]; p-value < 0.001)
indicated a roughly 6% (i.e., 0.026 ÷ 0.423) increase in the the probability of opt-in over the control group, the
latter of whom are estimated as opting-in with a probability of 0.443, on average (95% CI = [0.442, 0.444]; p-value
< 0.001). Thus, there is compelling evidence to reject the null hypotheses that the causal association between being
sent a supplementary day-ahead email and the probability of Session participation is equal to zero. This evidence
persisted when we adjusted for pre-treatment covariates (β̂ = 0.025 (2nd Stage Model); 95% CI = [0.018, 0.032];
p-value < 0.001).

Further still, the OLS estimate for the CACE of the SMS-plus-bonus condition is, respectively, 0.102 (95% CI
= [0.019, 0.033]; p-value < 0.001) and 0.098 (95% CI = [0.064, 0.132]; p-value < 0.001) in our simple and expanded
models of the probability of participating in the 12th Saving Session. And, in both cases, there is compelling evi-
dence to reject the null hypotheses that the causal association between participation and actually receiving SMS-
based notice, while beingmade eligible for the cash bonus, was equal to zero. These results indicate that being sent
a supplementary intraday SMS-based reminder while being made eligible for an additional price incentive caused

50Once again recall that our second DiD design (i.e., Signed Up Early vs Signed Up Late) does not produce Session-specific estimates for
Saving Sessions in February andMarch 2023. For this reason, we only show the ATE as a percent of the causal effects obtained using our Signed
Up Early vs. Never DiD design and our Octopus vs. Bulb DiD design.
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Table 10: Trial-based ATE of the day-ahead “heads-up” email on total consumption (kWh) during the 12th
Saving Session versus the ITT and the LATE for demand reduction during the same event obtained using DiDs.

Field Trial ATE Conditional on Pre-Treatment Covariates? No Yes

β̂ATE Intraday Notice + Day-ahead Email [Ref Intraday Notice Only] -0.021 (0.006) -0.011 (0.005)

β̂ITT Signed-up [Ref. Signed Up Never] -0.111 (0.002) -0.111 (0.002)
β̂ATE Intraday Notice + Day-ahead Email as % of β̂ITT Signed-up 18.95% 9.93%

β̂LATE (Sign-up) Octopus Customers [Ref. Bulb Customers] -0.166 (0.005) -0.166 (0.005)
β̂ATE Intraday Notice + Day-ahead Email as % of β̂LATE (Sign-up) Octopus Customers 12.65% 6.63%

Note: We multiplied the DiD coefficients and SEs from Table AT.2 by two, as the Saving Session on March 15, 2023 lasted two half-hours
(one hour), whereas the DiDs estimated the impact on half-hourly electricity consumption. We then calculated the size of the effect of the
day-ahead “heads-up” we identified from our field experiment (from our model without covariates, and with) as a percent of the demand
reduction identified by the DiDs. The Signed Up Early versus Late DiD did not produce Session-specific estimates for Sessions in February
and March 2022, as the control group for the Signed Up Early versus Late DiD comes from customers who joined in February and March 2022;
for this reason, we only show the results as a percent of our Signed Up Early versus Never and Octopus versus Bulb DiDs.Depending on the
model, the impact of the day-ahead “heads-up” was 7-19% of the overall Sessions demand reduction signed-up customers achieved.

an increase in the probability of opt-in by 23% (i.e., 0.098÷ 0.422) over the probability of event participation in the
control group (β̂ Intercept = 0.422; 95% CI = [0.421, 0.424]; p-value < 0.001), conditional on pre-treatment covari-
ates.51 Along this line, we also found compelling evidence to reject the null hypotheses that the OLS estimate of the
ITT effect is zero— i.e., that, conditional on covariates, mere eligibility for the SMS-plus-bonus treatment impacted
the probability of Sessionparticipation (i.e., β̂ Intraday SMS + £1.25 Incentive Assigned (Reduced Form Model) =
0.022; 95% CI = [0.015, 0.029]; p-value < 0.001). The ITT effect represents a 5% (i.e., 0.022 ÷ 0.422) increase in the
probability of opt-in due to treatment eligibility.

51In summary, then, the SMS with incentive caused more customers to opt in to the event, but we did not see an effect of the SMS with
incentive on electricity demand. This may be due to low power tomeasure the effect of the SMSwith incentive on electricity demand. However,
it may also be related to the incentive’s design. The incentive gave a bonus to customers for turning down at all. This may have induced extra
opt-in from marginal signed up customers in case the household had lower consumption than their baseline, perhaps even by chance. But it
has no bearing on the incentives of customers already planning to reduce demand. In other words, it encourages extra participation on the
extensive margin but not the intensive margin.
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Table 11: Models of the probability of opting into the 12th Saving Session (field trial).

Equation Reduced Fm. Reduced Fm. Reduced Fm. 1st Stage 2nd Stage 2nd Stage 2nd Stage
Response Variable Participation Participation Participation SMS + £ Participation Participation Participation

β̂ Intercept 0.443 (0.001) 0.434 (0.001) 0.422 (0.001) -0.000 (0.000) 0.443 (0.001) 0.434 (0.001) 0.422 (0.001)

β̂ Day-ahead Email 0.026 (0.004) 0.026 (0.004) 0.025 (0.004) 0.000 (0.000) 0.026 (0.004) 0.026 (0.004) 0.025 (0.004)

β̂ Intraday SMS + £1.25 Ass. 0.024 (0.004) 0.022 (0.004) 0.022 (0.004) 0.227 (0.003) — — —
β̂ Intraday SMS + £1.25 — — — — 0.103 (0.016) 0.095 (0.017) 0.098 (0.016)

Pre-treatment Covariates? No No Yes Yes No No Yes
Listwise Deletion? No Yes Yes Yes No Yes Yes
Observations 650,809 551,494 551,494 551,494 650,809 551,494 551,494
Estimator OLS OLS OLS OLS IV-2SLS IV-2SLS IV-2SLS
Hetero.-Consist. SEs (HC0) Yes Yes Yes Yes Yes Yes Yes
R2

Adj. 0.000 0.000 0.174 0.223 0.001 0.001 0.175
Partial F -Statistic 4814.807
Exogeneity Test p-value 0.021 0.021 0.010

Note: The table presents parameter estimates and standard errors (parentheses) for the ATE (β̂ Intraday Notice + Day-ahead Email [Ref
Intraday Only]), the CACE (β̂ Intraday Notice + Intraday SMS + £1.25 Incentive [Ref Intraday Only]), the ITT (β̂ Intraday SMS + £1.25
Incentive Assigned), and the expected average outcome in the control group (β̂ Intercept) from reduced form ordinary least-squares (OLS)
regression models as well as the 1st and 2nd stages of two-stage-least-squares (2SLS) regression models. “Intraday SMS + £1.25 Incentive
Assigned” is the singular instrumental variable (IV). Results rounded to three decimal places. See Long and Ervin (2000) for a discussion
and comparison heteroscedasticity-consistent covariance matrices. H0 for Wooldridge’s regression text of exogeneity is that the endogenous
variable “Intraday SMS+ £1.25 Incentive Assigned” is exogenous. For complete results depicting all covariates, see Table AT.29. See Table AT.25
for descriptive statistics and reference categories.

5 Cost effectiveness and welfare impacts of DFS

5.1 Total demand reduction from Saving Sessions

We estimated the total demand reduction caused by Saving Sessions using the LATE on sign-up from our Octopus
versus Bulb DiD. We judged this estimate of the impact of sign-up on demand to be especially strong for reasons
discussed in Section 2.4.2, namely that there is extremely minimal risk of Bulb customers choosing Bulb as their
supplier in anticipation of DFS, making their presence in our dataset a useful “natural” counterfactual group for
Octopus customers invited to participate in DFS. We calculated a separate effect for each Saving Session, inter-
pretable as the impact of signing up to Saving Sessions (by the Session in question) on consumption per half-hour
during the Session. We then multiplied this coefficient by the number of half-hours in the Session (usually two,
but three for the Session on January 24, 2023; and four for the Session on December 12, 2022) and by the number
of customers who had signed up Saving Sessions by that Session.52

We compare the demand reduction derived from our DiD to the demand reduction calculated through appli-
cation of the P376 methodology prescribed by NGESO, described in Section 2.4.1. As noted in Section 3.2, clipping
inflates demand reduction, but mostly when including all signed up customers in the calculation of demand re-
duction. Insofar as we consider our DiD results to be the relevant barometer of accuracy, the official methodology
– clipped demand reduction among opted in customers only – overestimates demand reduction by ≈13%.

52Note that the validity of this multiplication relies on a simplifying assumption: that the customers in our sample had a demand reduc-
tion from sign-up that is representative of customers out of our sample (i.e., the customers excluded from analysis for having insufficient
consumption data, moving home or supplier during the Saving Sessions period, or being a non-domestic customer).
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Figure 10: Total demand reduction (MWh) according to various methodologies.

Note: We show demand reduction from Saving Session according to five potential methods: unclipped reduction among opt-ins only; clipped
reduction among opt-ins only; unclipped reduction among all signed up customers; clipped reduction among all signed up customers; and
reduction as measured by the LATE on sign-up in our Octopus versus Bulb DiD. The official methodology is the second: clipped reduction
among opt-ins only. We found it is on average 13% higher than the result implied by our DiD.Meanwhile, interestingly, the unclipped reduction
among all signed up customers was very close to our DiD result.

It was not clear to us why unclipped demand reduction among opted in customers is consistently lower than our
DiD estimates. However, the unclipped version of theNGESOP376methodology is a pre-post, and it was arguably
just as likely to be downward as upward biased. In the following Sections 5.2 and 5.3, we use our Octopus versus
Bulb DiD Session-specific estimates (as shown in Figure 10) as our preferred estimate of total demand reduction.

5.2 Cost effectiveness

In Great Britain, NGESO and distribution network operators procure services to ensure real-time balancing of gen-
eration and demand aswell as ancillary services dealingwith inertiamanagement (a property of gridmanagement
related to resisting changes in system frequency), local voltage constraints, and constraints between transmission
boundaries (LCP Delta, 2023). The total costs of these services in the winter of 2022/23 was £1,235M, 20% less
than the previous winter, but still higher than previous years, according to LCPDelta’s Balancing Costs Review,
conducted on behalf of National Grid NGESO (LCP Delta, 2023).

These costs have increased in the past two years due to tighter systemmargins, high wind outputs which cause
higher transmission constraintmanagement costs between regionswith highwind and other parts of Great Britain,
and high gas prices. Balancing Mechanism costs were higher in 2021/22 and 2022/23 than ever before due to both
greater volume of balancing actions required and higher prices per balancing action. For example, the volume
weighted accepted offer price during winter 2022/23 was approximately £240/MWh, 159% higher than the prices
registered during winter 2020/21 (LCP Delta, 2023).

The DFS was an enhanced action that was available to NGESO’s control room to tender contracts to reduce
demandduring system scarcity. Partly because of its status as a demonstrator project, NGESOoffered aGuaranteed
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Acceptance Price of £3,000/MWh for test events. There was no Guaranteed Acceptance Price for live events, but
prices exceeded the test event GuaranteedAcceptance Price, ranging from £4,400 to £6,400/MWh (LCPDelta, 2023,
National Grid, 2023i). These prices were more than 10 times higher than the Balancing Mechanism’s capacity
weighted prices during winter 2022-2023, as we show in Table AT.30.

However, this comparison may be unfair to the DFS. The appropriate comparison may be to other enhanced
services that NGESO procured, including back-up services that were rarely utilized. The use of the remaining
five coal power plants in Great Britain was an important variable in considering costs of enhanced services.53
LCPDelta’s Balancing Costs Review, conducted on behalf of National Grid NGESO, wrote the following regarding
“changes in market behaviours”:

Last winter, ≈2GW of coal capacity consistently offered its generation into the Balancing Mechanism at prices close to
£4,000/MWh. This meant the units ahead of coal in the merit order, such as inflexible combined cycle gas turbine units,
were able to price their offers close to the £4,000/MWh with the same likelihood of being accepted as they had before.
This led to very extreme BalancingMechanism prices and costs on some days. This winter the coal units were given coal
contingency contracts and operated outside of the BalancingMechanism. This removed the upper limit of £4,000/MWh
for units to price up to and led to average peak prices dropping. The removal of this upper bound did however lead to
some rare occasions when even more extreme prices were seen, as the marginal units were able to set their own ceiling,
and on the 12th December prices as high as £6,000/MWh were accepted.

These coal contingency contracts were only utilized once, onMarch 07, 2023. Somewhat puzzlingly, that day’s total
balancing costs (£4.4M) and volume of actions (20 GWh) were lower than other key days during the winter. For
example, on December 12, 2022, balancing costs reached £27.2M for 23 GWh of actions; and on December 29, 2022,
balancing costs reached £11.9M for 49 GWh of actions (LCP Delta, 2023).

The coal power plants on these contingency contracts were instructed to warm up by NGESO in another six
instances over the winter: 12 December, 2022; January 23, 2023; January 24, 2023; January 26, 2023; February 7,
2023; and February 8, 2023. On these days, NGESO paid approximately £6,000 per hour of time the plants were
“warm” to synchronize them with the grid frequency, even though they were not utilized (Horgan, 2023a).

NGESO explained that they signed these winter contingency contracts “to ensure safe and secure operation of
the electricity system throughout Winter” (National Grid, 2022d). With a total capacity of 2.2 GW procured, these
contracts cost NGESO £340M to £395M (John, 2023, National Grid, 2022d). Only two units on the West Burton A
power plants were used on March 7, 2023 during a total of seven hours, with a total volume delivered of 2.5 GWh.

By comparison, DFS cost approximately £11.1M ((National Grid, 2023d) and calculated from National Grid
(2023g,h)), 2.8% of the capacity payments spent on the contingency coal contracts. Officially, the DFS delivered
3.3GWh of demand reduction, though our difference-in-differences calculations of Octopus Energy’s official versus
actual demand reduction might lead one to judge ‘actual’ demand reduction to be closer to 2.9 GWh (assuming
an overestimation of ≈13% in the DFS official figures). Viewed in this light, the costs associated with DFS were
arguably small compared to the £340M to £395Mprocurement costs associatedwith the contingency coal contracts,
despite comparable total utilization.

5.3 Welfare analysis

We have completed a welfare analysis following Finkelstein andHendren (2020) andHendren and Sprung-Keyser
(2020), calculating the marginal value of public funds (MVPF) associated with DFS. The MVPF compares the

53During winter 2022/23, the five coal power units receiving contingency payments were: West Burton A (two units), Drax (two units), and
Ratcliffe (one unit). See National Grid (2022d).
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marginal social benefits of the policy to the net cost to the government. In this case, to simplify our analysis, we
consider NGESO to be close enough to the Government that we assume their costs to be the Government’s.

MVPF =
Beneficiaries’ willingness to pay

Net Costs (21)

We focused on the costs and benefits of Octopus Energy’s Saving Sessions only. We had individual data for
Octopus Energy customers and thus have the ability to estimate their actual demand reduction fromour difference-
in-differences, in contrast to demand reduction from other DFS providers. We then used these costs and benefits
to calculate the MVPF for Octopus Energy’s Saving Sessions.

5.3.1 Costs

NGESO paid Octopus Energy £3/kWh of electricity demand reduction during test events, as discussed in Sec-
tion 2.2. Demand reduction was measured using P376 baselines and clipping demand reduction at 0, as explained
in Section 2.4. For live events, priceswere settled through a private auction. In Section 2.3, we showed howOctopus
Energy rewarded customerswith different incentives for their participation in the two live events. We assumed that
Octopus Energy retained the same amount of money per customer per kWh of demand reduction – £0.75. We thus
obtain assumed auction prices of £4.125 and £4.75. A summary of these assumptions is presented in Table AT.31.

The mechanical costs for NGESO for each individual event are equal to NGESO payments multiplied by total
demand reduction as calculated using the P376 methodology and “clipping” demand reduction in any given half-
hour at 0, as discussed in Section 2.4.

Fiscal externalities to the DFS intervention are difficult to measure. Do generators or suppliers change their
generation schedules or procurement strategies in response to changes in wholesale prices brought on by DFS dis-
placing some marginal generation, thus affecting tax revenue? We think these effects are unlikely or very small
too. We have thus ignored fiscal externalities in this analysis. We also ignore effects of demand reduction on Oc-
topus Energy’s income and Government revenue. Lower demand reduces customer expenditures, which reduces
Octopus Energy income and/or Government tax revenue (through VAT and corporate income taxes). However,
these effects will be exactly offset by lower energy bills for customers, and the welfare effects would be zero overall.
Due to the envelope theorem, consumers are indifferent between their pre-Savings Session consumption and the
Savings Sessions incentive with the change in their consumption, thus we do not add up the energy savings as
benefits to the consumers.

Thus the costs considered for this calculation are:

Costs = P376 clipped demand reduction ∗ ESO payments [Test/Live] per demand reduction (22)

5.3.2 Benefits

We consider three main benefits of the implementation of the DFS service: revenue to consumers and suppliers,
CO2eq savings, and avoided probability of lost load (blackouts).

Payments to consumers and suppliers. We assume DFS payments to consumers and Octopus Energy are a ben-
efit to these recipients. We assume no costs by consumers (in turning down) nor by Octopus Energy (in setting
up the Saving Sessions program). We then calculate:

Payments = P376 clipped demand reduction ∗ ESO payments [Test/Live] per demand reduction (23)
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CO2eq abatement benefits. Demand reduction causes societal benefits associated with pollution reduction asso-
ciated with electricity generation.54 NGESO introduced DFS as an enhanced action. Enhanced actions take place
when NGESO has exhausted other market actions such as buying electricity from continental Europe, reconfig-
uring combined cycle gas turbine dispatch levels, or calling on cold generators (including some of Great Britain’s
coal generators) to warm up and be ready for dispatch in the Balancing Mechanism. NGESO published the “or-
der of action” of these services in their “DFS Deep Dives” slides (National Grid, 2022c, 2023e). The DFS and the
Winter Contingency Coal Contracts were conceived as last-resort options to prevent or reduce any requirement for
demand disconnection when all other options had been exhausted.

Under these conditions, we assume that the Saving Sessions displaced either 1) coal that would have provided
reserve capacity, or 2) the marginal generation in the merit order for the settlement periods during Saving Sessions
when Octopus Energy customers reduced their demand. We note the following considerations and assumptions:

• Given the high gas prices duringwinter 2022-2023, gas combined cycle gas turbineswere always themarginal
fuel in the Balancing Mechanism merit order as seen in Figure AI.5.

• One might have thought that the distinction between live versus test events under the DFS causes different
scenarios for marginal plants. Indeed, during some Saving Sessions, NGESO instructed some coal power
plants to warm up (Grid Beyond, 2023). However, this happened not only during the live events on January
23rd and 24th 2023, but also during the test event on Dec 12th 2022. On none of these occasions was the coal
actually utilized; the first time that the backup coal generation was used was onMarch 7, 2023, during a cold
snap in Great Britain (Gillespie, 2023).

In summary, we assumed that:

1. During eventswhenNGESO’s control roomdidnot instruct back-up coal generators towarmup, themarginal
generator was always a combined cycle gas turbine, and Saving Sessions demand reduction displaced this
gas generation.

2. When coal generators were instructed to warm up by the control room, Saving Sessions demand reduction
displaced their use as an alternative enhanced action. Functionally, this means that we assumed that the
marginal fuel displaced was coal on the Saving Sessions of December 12, 2022, January 23, 2023, and January
24, 2023.

In order to account for the CO2 abatement caused by Saving Sessions, we used the valuation of greenhouse gas
emissions for policy appraisal and evaluation published by the UK Government in their central series (UK GOV,
2021): 248 £2020/tCO2 for Sessions held in 2022 and 252 £2020/tCO2 for Sessions held in 2023. These prices are
in £2020; we adjust for inflation using the Bank of England inflation calculator (Bank of England, 2023). For both
gas and coal, we used the direct emissions of specific generation technologies reported by the Intergovernmental
Panel on Climate Change of combined cycle gas turbines and coal plants (Bruckner et al., 2014). We calculated
these savings based on the demand reduction we measure using our Octopus versus Bulb DiD, as described in

54We have not included co-benefits of CO2 abatement in this analysis. We analyzed additional benefits from air quality improvements as-
sociated with abatement of pollutants associated with electricity generation (UK GOV, 2023a). The emission factors of NOx, SOx and PM2.5
pollutants from Department for Environment, Food and Rural Affairs (Defra) (2023) and the damage costs of these pollutants can be con-
sulted in Table AT.32. The contribution of these additional benefits is small when compared to the CO2eq savings that we obtain in Table 12,
only accounting for 0.4% or 7.4% of these savings when the marginal fuel is gas or coal respectively. Due to these co-benefits’ small overall
contribution to the total benefits calculation (2.2% of the total CO2eq savings), we ignore them in this main analysis. However, it is important
to highlight that the literature does not present a comprehensive framework to quantify these co-benefits outside of air quality and impacts on
health (which have regional and local effects), and their value could be higher than currently estimated (Brockway and Finn, 2022, Jennings
et al., 2020).
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Section 5.1. In summary, we calculated CO2 savings from Saving Sessions as follows:

CO2 Savings = DiD demand reduction ∗ CO2 emissions [gas/coal] ∗ social cost of CO2 in £2023 (24)

Using the demand reduction calculated through our DiD methodology, as noted in the fourth row in Ta-
ble AT.30, we show estimated emission savings in Table 12:

Table 12: DiD estimated demand reduction and CO2eq emission savings per Saving Session.

Saving Session date DiD demand reduction by Octopus Energy (MWh) CO2eq reduction (tCO2eq) CO2eq savings (£)
November 15, 2022 93.02 70.70 21,022.75
November 22, 2022 121.68 92.48 27,500.05
November 30, 2022 111.46 84.71 25,189.81
December 1, 2022 92.83 70.55 20,978.92
December 12, 2022 277.57 102.70 30,538.84
January 19, 2023 68.80 52.29 15,549.04
January 23, 2023 185.99 68.82 20,463.34
January 24, 2023 216.33 80.04 23,801.55
January 30, 2023 67.89 51.60 15,343.83
February 13, 2023 107.45 81.66 24,283.66
February 21, 2023 106.94 81.28 24,168.84
March 15, 2023 113.67 86.39 25,689.78
March 23, 2023 78.42 59.60 17,723.33
Total 1,642.09 982.83 292,253.74

Note: Using the results of our Octopus versus Bulb DiD, specifically the LATE on sign-up, we estimated the demand reduction achieved in
each of the Saving Sessions that Octopus Energy implemented throughout Winter 2022-2023. These results differed from the official demand
reduction calculatedwith the P376methodology suggested byNGESO,with our estimation usually lower than the demand reduction estimated
usingNGESO’smethodology. By assessingwhichwas themarginal generation for each of the half-hours inwhich the Saving Sessions occurred,
we inferred the fuel generation that was avoided – in all instances, either gas or coal. We assumed that if coal plants under the Coal Contingency
Contracts were called to warm up, coal generation was displaced, irrespective of the marginal plant in the Balancing Mechanism providing
services. With the corresponding CO2 emissions for each of these fuels and using the calculated demand reduction from the DiD, we then
calculated the amount of CO2eq emissions avoided.

Other benefits: Value of Lost Load. In extreme scenarios and/or in the future, services like the DFS will not
only displace gas and coal generation, but will also alleviate insufficient reserve capacity where there is a danger
of lost load (blackouts). Lost loads may increase in probability as renewable penetration of the UK grid increases;
in addition, coal power plants, including all three of the coal power plants that were in service during the winter
of 2022-2023, are steadily being retired over the next two years.55

The value of lost load (VoLL), which is currently set at £6,000/MWh by the Balancing and Settlement Code
(National Grid, 2022a), signals the value to domestic and non-domestic consumers inGreat Britain of having secure
and continuous electricity supply. This estimate is in a similar range to the VoLL of $4,300/MWh found by Brown
and Muehlenbachs (2023) based on quasi-experimental evidence based on battery adoption among customers of
California’s largest electric utility, Pacific Gas and Electric, though much higher than the $1,500/MWh found by

55After winter 2023-24, NGESO began talks with EDF and Drax about their coal units in West Burton and Yorkshire. Some of these units
provided contingency services during winter 2022-23 through the coal contingency contracts, while other units at these sites sold electricity in
wholesale markets and the balancing mechanisms. Both companies have already confirmed they were unable to strike a deal with NGESO to
continue operations past winter 2022-23 (Drax, 2023, EDF, 2023). Uniper’s Ratcliffe-on-Soar has confirmed that the plant will stay online but
retire in September 2024 (Horgan, 2023b).
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Khanna and Rowe (2023) based on quasi-experimental evidence in Delhi.56 With this in mind, we have calculated
a secondMVPFwherewe assume that demand reduction caused by Saving Sessions is valued at the administrative
VoLL (£6,000/MWh).

VoLL = DiD demand reduction ∗ £6,000/MWh (25)

5.4 Calculation of MVPF for each Saving Session

Using the assumptions outlined above, we calculated theMVPF for each individual Saving Sessionwithin the DFS,
presented in Table 13.57 We show the inputs and outputs of the MVPF visually in Figure 11. The results suggested
that the DFSwasmost valuable when used to avoid cases in which there is a high chance of lost load in the absence
of compensatory actions.

Table 13: Values of MVPF for each individual Saving Session and for the whole program.

Day MVPF MVPF (VoLL scenario)
November 15, 2022 1.06 2.76
November 22, 2022 1.07 3.29
November 30, 2022 1.06 3.01
December 1, 2022 1.06 2.78
December 12, 2022 1.02 3.03
January 19, 2023 1.05 2.74
January 23, 2023 1.02 2.47
January 24, 2023 1.02 2.12
January 2023 1.05 2.42

February 13, 2023 1.05 2.63
February 21, 2023 1.05 2.44
March 15, 2023 1.05 3.13
March 23, 2023 1.04 2.31

Weighted average 1.05 2.63

Note: The MVPF of Saving Sessions we calculated using the costs and benefits outlined in Sections 5.3.1 and 5.3.2. The MVPF ignoring the
Value of Lost Load (VoLL) suggested positive but limited additional value from DFS, as the MVPF calculated is very close to 1. However,
where we assume that the DFS avoids the use of actions valued at the level of VoLL, as explained in Section 5.3.2, the MVPF rises to values in
between 2.12 and 3.29 depending on the Saving Sessions studied.

56Interestingly, the “administrative VoLL value” of £6,000/MWh may be lower than the true VoLL from NGESO’s perspective, as revealed
by the fact that NGESO has taken some actions whose cost was above £6,000/MWh (National Grid, 2022a). Other Balancing Mechanism prices
have reached levels close to £6,000/MWh, for instance during the Saving Session run on 12 December, 2022 (National Grid, 2023e). Relatedly,
the BSC’s £6,000/MWh VoLL estimate is based on a report commissioned by Ofgem and prepared by London Economics in 2013, which set
a weighted average VoLL across domestic and SME users for the winter peak weekday figures of £16,940/MWh (Economics, 2013). Another
issue with the VoLL set by the U.K. government is that it is a single number and thus does not vary based on important characteristics of a
blackout, such as weather, the extent of notice period of the peak period, and the size and length of the blackout (Borenstein et al., 2023).

57In these calculations, as outlined in Sections 5.3.1 and 5.3.2 we use the demand reduction derived from our Octopus versus Bulb DiD
to value the CO2 carbon emissions abatement and value of lost load. If we used the P376 methodology, which over-estimates this demand
reduction by a factor of 13% as seen in Table AT.30, we would obtain slightly higher MVPF values. These can be see in Table AT.33 and
compared to the ones in Table 13.
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Figure 11: Summary of costs and benefits for the whole Saving Session campaign.

MVPF (base scenario) = 1.05
MVPF (VoLL scenario) = 2.63

Note: We calculated benefits and costs benefits as outlined in Sections 5.3.1 and 5.3.2 Note that we calculated the benefits to OE Customers and
OE, and the costs to NGESO, using the P376 baseline methodology (see Table AT.30), which we believe overestimated demand response by
13%, as DFS providers and NGESO used used this methodology to settle flexibility delivered. In contrast, we calculated Social Benefits using
“real” demand reduction as estimated through our DiD methodology (see Table AT.30). As explained in Section 5.3.1, we have ignored fiscal
externalities and additional health benefits from GHG emissions in this analysis as they are likely to be very small.

6 Conclusion

As electricity grids around the world increase their share of generation from renewable but non-dispatchable
sources, the importance of demand side response to grid stability will increase (Lever et al., 2021, Mata et al.,
2020, National Grid, 2023j, Sanders et al., 2016). In the past, industrial and commercial consumers have provided
most demand side response (Element Energy, 2012, Warren, 2014). Domestic consumers are an important source
of further response.

We analyzed the UK’s largest ever demand response program to measure its impact on energy demand and
economic welfare. To understand the impact of this program, the UK National Grid Electricity System Opera-
tor (NGESO) used a specific methodology for calculating demand reduction, governed by the P376 amendment
to Great Britain’s electricity balancing and settlement code. This technique is akin to a “pre-post” comparison
whereby customers’ consumption before a Saving Session is used as their “baseline” from which to calculate de-
mand reduction, defined as the difference between the result of this baseline and their actual consumption. Much
of the impetus for our research stemmed from our concern about potential biases associated with this approach,
such as selection.

Using our Octopus versus Bulb DiD, we found that simply inviting customers to sign up to Saving Sessions is
associated with a ≈10% reduction in consumption during Saving Sessions. Using all three of our DiDs, we found
that signing up to participate in DFS events reduced demand by ≈25% during Saving Sessions. Additionally, we
found that “opting in” to participate in Saving Sessions reduced demand by ≈40% during the campaign.

These effects were larger than those usually seen in large-sample randomized control trials. For instance, the
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impact of home energy reports has been estimated to be a 1-3% reduction in customers’ energy consumption (All-
cott and Rogers (2014), Brandon et al. (2017)). However, the effects we identify are in line with the impact of
time-of-use tariffs and other technologies to reduce demand for specific hours of the day, usually identified in
much smaller-sample settings (Crawley et al., 2021, Mata et al., 2020, Stromback et al., 2011). As with these anal-
yses of efforts to reduce consumption during key peak times, Saving Sessions involved people reducing demand
for just 29 half-hours during the winter period.

We found differences between our estimated demand reduction and those estimated using the methodology
endorsed by NGESO. Across Octopus Energy’s customer base during those half-hours, the demand reduction
totalled 1642 MWh demand reduction, over 14.5 hours. This estimate is approximately 13% lower than the official
1860 MWh demand reduction as measured by Octopus Energy following NGESO’s “pre-post” methodology. We
believe that this suggests an upward bias in the NGESOmethodology, which comes from both measurement error
and selection. Still, there is a relatively close concordance between results obtained from our DiDs and those
obtained using NGESO’s preferred methodology for each individual event.

We also examined how changing notice period and incentive level (£ per kWh demand reduction) changes
customers’ response. Almost all Saving Sessions featured day-ahead notice, and customers tended to receive this
day-ahead notice around the same time for any given Session. Moreover, although the incentive level somewhat
varied between Sessions, it never varied between customers within a Session.

Two Saving Sessions (i.e., 13 Feb 2023 and 15 March 2023) featured different notice periods and financial in-
centives provided to customers. Analyzing data from the 13 Feb 2023 Session, we found that intraday (instead of
day-ahead) notice increased in-Session consumption by≈7.1%. This extra consumption represents approximately
25% of customers’ Saving Sessions demand response based on our DiDs. The 15 March 2023 Session featured
intraday notice for most customers with a randomized subset receiving a special “heads-up” email. This sup-
plementary messaging is arguably “softer” than the standard day-ahead notices, as customers could not use the
heads-up email to opt into the Saving Session. And while the email said there may be a Session the next day, this
was not guaranteed. Despite being non-committal, we found that the day-ahead heads-up email further decreased
in-Session consumption by 2-3%, approximately 7% of typical demand reduction achieved by signed up customers
in that Session. In terms of Session participation, we also found higher opt-in rates when customers have longer
notice. We found higher opt-in and lower consumption among a random subset of customers who received an
SMS with an extra £1.25 incentive if they reduced their demand. However, the consumption differences were not
precise enough to rule out the possibility of no difference between these customers and the “business-as-usual”
customers who did not receive this SMS.

Overall, our welfare analysis suggested that the program yielded positive benefits relative to the costs involved.
Specifically, the MVPF when ignoring the value of lost load was 1.05, with only very small marginal benefits.
However, when we ascribed the UK’s official value of lost load to each MWh of demand reduction, we found a
large MVPF of DFS of 2.6. In other words, DFS was more valuable in cases in which there was a high chance of
lost load, which may increase in probability as renewable penetration increases and coal power plants are retired
in Great Britain over the next two years. In addition, if the high Guaranteed Acceptance Price (£3,000 per MWh in
the 2022-23 Saving Sessions) becomes lower or unnecessary over time, the MVPF is likely to increase.

Our welfare analysis made important simplifying assumptions. In particular, we assumed that it was cost-less
for both 1) DFS providers like Octopus Energy to deliver DFS implementations like Saving Sessions, and 2) for
customers to deliver demand reduction. Further research where the incentive per kWh demand reduction varies
between customers will be crucial to elucidate the consumer welfare costs of delivering flexibility.

Finally, our analyses suggest a tension between the value and magnitude of flexibility response. We believe it
is reasonable to assume that grid operators such as NGESO find it more difficult to forecast lost load in a given
half-hour for half-hours further in the future. If it is correct that lost load becomes more certain when the half-

53



hour in question approaches, our results from our RDD and field experiment suggest that grid operators and
policymakers face a potential trade-off. If the notice period required fromNGESO and grid operators is shorter, the
flexibility is more valuable. Yet, our results show that domestic customers’ flexibility response is smaller, though
still substantial, when the notice they receive is closer to the time of flexibility “delivery”.
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AI Additional Information

AI.1 Who participated in Saving Sessions?

As discussed in Section 2.3, customers proactively signed up to Saving Sessions. Thus, those who signed up may
have been systematically different from those who did not. Once signed up, customers proactively chose to opt in
to each Session, in response to a communication from Octopus Energy, on a Session-by-Session basis. Thus even
conditional on sign-up, those who opted in may have been systematically different from those who did not.

AI.1.1 Differences between groups on observable characteristics

We looked at differential sign-up first. Our three DiD strategies exploit three sources of differential sign-up in
Saving Sessions: 1) not signing up at all, 2) signing up after most Saving Sessions had happened, and 3) not
being invited to sign up due to being a Bulb customer. We examined how these groups differed on observable
characteristics in Figures AF.5 to AF.7.

First, we examined how groups differed on customers’ region. We used three large regions: 1) Scotland, 2)
North England and North Wales, and 3) South England, South Wales, and the Midlands.58 We found somewhat
minimal differences between groups in terms of these three larger regional categories, though Bulb customers
were somewhat less likely to reside in North England and North Wales, and more likely to reside in Scotland, the
Midlands, South England, and South Wales.

Second, we examined whether the customer was on a “smart” tariff. Smart tariffs are special tariffs for cus-
tomers who have electric vehicles, batteries, heat pumps, and other ’low carbon technologies’. We considered
whether a customer was on a smart tariff as a proxy for their engagement with their home’s energy consumption.
We found large differences in whether the customer was on a smart tariff between sign-ups and non-sign-ups: 9%
of Signed Up Early group were on a smart tariff compared to only 6% of Signed Up Late group and only 3% of
non-sign-up customers smart-meter customers.59

Third, we showed how customers’ Energy Performance Certificate (EPC) letter ratings varied by group. In the
UK, an EPC is a property’s energy efficiency rating from A (most efficient) to G (least efficient) and is valid for
10 years. EPCs are needed whenever a property is built, sold, or rented. This requirement means that properties
without EPCs are more likely to be owner-occupied (rather than rented) properties that have not been sold in
the previous 10 years. The distributions of grades were similar across groups, though Octopus customers were
somewhat more likely to have no EPC than Bulb customers, as are customers from the Signed Up Late group
compared to customers from the Signed Up Early group.

Fourth, we showed the index of multiple deprivation (IMD) for the customer’s postcode. IMD is a measure of
relative deprivation for each postcode of the UK.We show IMD quintiles: a postcode can be classified with levels of
deprivation in the following groups: “very low”, “low”, “medium”, “high”, and “very high”.60 We found higher
sign-up in lower-deprivation postcodes. The Signed Up Late group also disproportionately came from lower-
deprivation postcodes, but not to the extent that the Signed Up Early group did. The Octopus and Bulb groups
showed overall similar distributions in terms of IMD.

58We defined a customer’s region based on their district network, a common regional identifier in energy analysis in Great Britain. There are
two district networks in Scotland: 17 (North Scotland) and 18 (South and Central Scotland). There are four district networks inNorth England
and North Wales: 13 (North Wales, Merseyside and Cheshire), 15 (North East England), 16 (North West England), and 23 (Yorkshire). The
other eight district networks are in the Midlands, South England, and South Wales: 10 (East England), 11 (East Midlands), 12 (London), 19
(South East England), (20 (Southern England), 21 (South Wales), 22 (South West England).

59Bulb customers could not sign up to any Octopus Energy smart tariffs, and Bulb did not have a similar set of smart tariffs.
60See: Office for National Statistics (2022). Customer postcode IMDwas “unknown” for new postcodes that do not yet have an IMD – these

were fewer than 1% of Octopus Energy customers.
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Finally, we showed how customers in each group differed in terms of their estimated annual electricity con-
sumption (EAC), a data point that British energy suppliers hold for all customers. As we see in Figures AF.8
to AF.10 the distributions of EAC are very similar for each pair of groups in the three DiD analyses.

Finally, we performed a logistic regression (Table AT.21) of sign-up at any point during the Saving Sessions
period on a suite of observable characteristics among all customers that Octopus Energy invited to participate.
These included the ones discussed above— EAC, binarized into “high” (greater than or equal to 2,900 kWh/year),
or “low” (less than 2,900 kWh/year), where 2,900 kWh/year is a commonly used demarcator of median EAC in
Great Britain, IMD quintile, EPC letter grade (with a separate category for no EPC), region (using all 14 district
networks as separate categories), and whether the customer was on a smart tariff. We also included a suite of
observable characteristics for which we have incomplete data from the DOMUS Property Database: occupancy
type (whether the household was a single occupant, a couple, or more than two occupants), floor area (where we
categorized 0-68 square meters as “low” floor area homes, 68-90 square meters as “medium” floor area homes, and
greater than 90 square meters as “high” floor area homes), age of primary bill payer (in categories of 18-24, 25-34,
35-44, 45-54, 55-64, 75+ years old), and whether the home was in an urban or rural area.61 Sign-up was higher
among customers from lower-deprivation postcodes, where the primary bill-payerwas “middle-aged” (45-74 years
old), where the home had larger floor areas, and among couples.

AI.1.2 Characteristics of customers who opted in to events

Once customers signed up, they opted into Sessions on a Session-by-Session basis, meaning that opt-ins may be
systematically different from non-opt-ins. We investigated this issue using a Poisson regression predicting the
number of Sessions a customer opted into, using the same customer characteristics as in our logistic regression
predicting sign-up. In examining Table AT.22, we found similar patterns in terms of customer characteristics influ-
encing the number of events opted into as we saw in examining customer characteristics’ association with sign-up.
“Middle-aged” (45-74 year old) primary bill payers opted in to more events. Couples opted in to more events than
multi-occupant households and single-adult households. Large floor area households opted in to more events
than medium and small floor area households. Customers in lower-deprivation postcodes opted in to more events
than customers in higher-deprivation postcodes.

As another way to examine participation, we examined the likelihood of opting in to a Session, conditional on
having signed up to the broader Saving Sessions program before the Session in question (Table AT.23). Again, we
found broadly similar associations between customer characteristics and likelihood of opting in.

Finally, we examined an important pair of Sessions, which, unlike any other Sessions, happened on consecutive
days – January 23, 2023 and January 24, 2023. They were also unusual in that they were considered “live” rather
than “test” events and featured higher compensation per kWh of demand reduction (£3.375/kWh and £4/kWh
respectively rather than the usual £2.25/kWh). In examining opt-in to the Session on January 24, 2023, we found
the same overall pattern of characteristics associatedwith opt-in as described in themore general regressions above,
with higher opt-in among middle-aged and older primary bill-payers, larger sized properties, lower-deprivation
postcodes, couples (rather thanmulti-occupant households), and smart tariff customers. In our logistic regression
predicting sign-up on January 24, 2023, in addition to these covariates, we also controlled for opt-in to January 23,
2023.

In theory, opt-in to January 23, 2023 could be negatively associated with opt-in to January 24, 2023 because
of fatigue, or positively associated because it captures latent engagement and/or because customers might form
habits of participating in Sessions, where initial participation begets further participation. Our regression model
(Table AT.24) is not causal, so we cannot say with confidence which effect dominates. However, we found that

61We included “unknown” as a category in all variables from the DOMUS dataset.

65



opt-in to January 23, 2023 was indeed a very strong predictor of opt-in to January 24, 2023.

AI.2 Mechanisms of Energy Reduction During Saving Sessions: Full Results

Here we explore the behaviors customers used to reduce their domestic electricity consumption during Saving
Sessions using two sample surveys. Our sampling frame for these surveys was the population of Octopus Energy
customerswho had signed up to participate in Saving Sessions by two key dates. OnMarch 20, 2023 (i.e., a fewdays
after the penultimate Saving Session onMarch 15, 2023), we invited 5,000 randomly-chosen signed-up customers to
take part in our first survey. In total, 933 of these customers agreed to take part resulting in a response rate of 18.7%.
On April 19, 2023 (i.e., a few weeks after the Saving Sessions campaign had ended), we invited 55,000 randomly-
chosen sighed-up customers to take part in our second survey. In total, 4,818 of these customers agreed to take part,
resulting in a response rate of 8.8%. Customers invited to take part in our first and second surveys did not overlap.
Octopus Energy’s marketing team distributed the surveys to the randomly-chosen customers. To do so, this team
sent emails to the randomly-chosen customers that included hyperlinks to the surveys. The surveys themselves
were built using Typeform, a widely used online-survey platform. The surveys did not explicitly solicit consent to
participate. However, Octopus Energy’s marketing team sends customers surveys periodically, and customers are
always free to respond or withhold response without penalty.62

The two surveys had slightly different sets of questions. Both asked customers about their general experience
during the Saving Sessions they opted into, whether they would be interested in participating in future Sessions,
and what steps they had taken to reduce their electricity consumption during the Saving Sessions they opted into.
To design the surveys, we collaborated with Octopus Energy’s marketing team given their experience designing
surveys for customers and we sent the surveys to colleagues for feedback on the degree to which the questions
were understandable and unambiguous.

AI.2.1 Representativeness of Survey Respondents

We compared survey respondents to our population of signed-up Saving Sessions customers using five metrics.
The first three metrics were the same metrics we used to compare DFS-participating Octopus Energy customers
to Octopus Energy smart meter customers in Section AI.1. Recall that these metrics are: (a) whether a customer
has a “smart” tariff; (b) a customer’s estimated annual electricity consumption (EAC), which we dichotomize into
“high” (i.e., EAC ≥ 2,900 kWh/year) and “low” (i.e., EAC < 2,900 kWh/year) EAC; and (c) the index of multiple
deprivation (IMD), split into quintiles, for the postcode within which a customer resides. Our remaining two
metrics proxied engagement with the peak-pricing campaign itself: (a) the number of Saving Sessions a customer
opted into; and (b) the cash value of the average number of OctoPoints a customer earns across the Sessions they
opted into.

Survey respondents were broadly representative of the typical customer signed-up to Saving Session sign-up in
terms of tariff type, EAC, and postcode IMD (Figure AF.17). However, respondents were somewhat unrepresenta-
tive with respect to Saving Sessions engagement, with survey respondents showing particularly high engagement
with the Saving Sessions campaign.

AI.2.2 Survey Findings

Session Satisfaction and Future Participation. Survey results suggested a high degree of enthusiasm about Sav-
ing Sessions. Specifically, over 96% of customers were interested or somewhat interested in continuing partici-

62We speculate that the reason for the lower response rate in the second survey was due to the reduced salience of Saving Sessions when
the marketing team sent the emails to customers (a few weeks after the Sessions had ended, rather than in the middle of the Sessions season).
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pating in Saving Sessions in the future with less than 1% of the respondents responding “Uninterested” or “Very
uninterested” (Figure AF.18). And almost 90% of customers said they would be interested in participating in
two or more Sessions per week if the program were run again “next Winter” (Figure AF.19). Furthermore, 28%
expressed an interest in ten Sessions weekly (i.e., more than one per day). However, notable percentages of the
respondents preferred only two Sessions per week (16%) or three sessions per week (12%). Overall, 90% of the
responses preferred to have more than two sessions per week.

In the future, grid operators are likely to see period of times during which there is excess electricity, especially
in areas near sites of renewable power generation. In such a scenario, it can be beneficial for customers to increase
their energy consumption in order to relieve the need to use electricity during more energy-constrained scenarios
wherein coal andgaswould be used tomakeup shortfalls. Thus, wenote that 80%of survey respondents responded
“Yes” to the question “Would you be interested in being paid to use more energy during times when there’s too
much electricity on the grid?”.

Finally, in response to the question “Howmuch notice would you consider a minimum to prepare for a Saving
Session?”, 20% of survey respondents said they could prepare with zero to one hour or one to four hours of notice.
Nevertheless, most customers said they would need four or more hours notice.

Manual Versus Scheduled Flexibility Strategies. To better understand the behavioral mechanisms of energy
reduction, we asked survey respondents who opted into Saving Sessions “What best describes how you partici-
pated?” and provided themwith a series of non-mutually-exclusive responses. Customers could “tick” agreement
with as many of the responses as they wished. 75% of respondents indicated that they engaged inmanual demand
shifting in that they “manually switched off appliances during the Session and used them at other times”. Amuch
smaller group (i.e,. 22% of respondents) indicated that they incorporated scheduled demand shifting, agreeing to
either (or both) of the response options “scheduled my appliances (like the tumble dryer) to come on before the
Session” and/or “scheduled my appliances (like the tumble dryer) to come on after the Session”.

We observed that these proportions did not vary very much by subgroup: manual methods of demand shift-
ing were more frequent then scheduled techniques amongst all sub-populations we examined. However, survey
respondents on smart tariffs and those with higher estimated annual electricity consumption did more scheduling
of appliances (Figures AF.20 and AF.21). We observed little difference on these measures in relation to customers’
postcode-level deprivation (Figure AF.22).

Looking at how these answers varied by level of per-Session average remuneration (Figure AF.26), two patterns
emerged. First, lower-remunerated customers, i.e. those who earned less than 50p, accounted for approximately
6% of survey respondents but 30% of Saving Sessions sign-ups. This group said they did almost all behaviors at
lower rates than other customers. Second, changes to electric vehicle (EV) charging were associated with higher
average remuneration. (n.b., rows in Figures AF.26 and AF.27 do not sum to 100% because responses are not
mutually exclusive.)

We also saw limited differences between behaviors undertaken by customers exhibiting low versus medium
versus high annual electricity consumption, with the exception that changing EV consumption is associated with
higher consumption levels (Figure AF.27). This was arguably to be expected, given that EVs are a significant
source of extra electricity consumption for homes, so wewould expect EV owners to be over-represented in higher-
consumption homes.

Domestic Absence During Sessions. We also asked respondents “What best describes how you participated?”
and provided themwith two, non-mutually-exclusive options— i.e., was the respondent “already out of the house
during the Session“ and did the respondent “leave the house during the Session” — to which customers could re-
spond ”neither“, ”one“, or ”both“. In posing these questions, wewere especially curious as towhether respondents
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tended to opt into Sessions when they were already going to be out of the house. Such behavior may have counted
as ”flexibility“ under NGESO’s P376 preferred baselining methodology but it does not represent true reduction of
energy consumption. Nevertheless, we found little evidence of this practice amongst survey respondents as just
9% said they were “already out of the house during the Session”. This prevalence of domestic absence does not
differ by remuneration level.

Spillover of Energy Behavior Into Periods “Around” Sessions. We also asked customers: (a) “Did participating
in a Saving Session changewhat you did before the Session?”; and(b) “Did participating in a Saving Session change
what you did after the Session?”, obtaining the following responses:

• 60% of respondents said the Saving Session did not change their behavior before the Saving Session, whereas
23% of respondents and 13% of respondents respectively said that they used more electricity and used less
electricity before the Saving Session.

• 50% of respondents said the Saving Session did not change their behavior afterwards, whereas 23% of re-
spondents and 22% of respondents respectively reported using more electricity and less electricity after the
Saving Session ended.

That the percentage of respondents who reported using less electricity was nine points higher after the Saving
Session (i.e., 13% before the Session vs. 22% after) suggests that demand reduction behaviors may have continued
past the Saving Session. Indeed, recall the small but nonzero effects of signing up to Saving Sessions on the half-
hours ”just after“ and ”just before“ Sessions we see in our difference-in-differences regressions.

Note that that these percentages did not differ greatly in relation average remunerationper Session (FiguresAF.23
and AF.24). However, higher-remunerated customers tended to report “no change” in consumption before or af-
ter the Saving Session, which may suggest that these customers were especially good at “concentrating” their
consumption reduction during period wherein reduction is remunerated.

AI.3 Calculating theWald estimator of impact of opt-in by hand versus through two-stage-
least-squares regression DiD models

As discussed in Section 2.4.2, we obtained LATEs for our difference-in-differences designs using 2SLS regression
and binary instruments in the form of multiplicative interactions between treatment group and treatment period.
This is perhaps an unusual analytical strategy. Accordingly, we checked that that results obtained directly with
our regression modelling reflects the basic logic of a complier average causal effect (CACE) as an ITT effect that is
“diluted” by non-compliance. We did this by simply comparing the LATEs reported in the main text to Wald esti-
mates calculated “by hand” by dividing our common and Session-specific ITT effects by compliance rates around
Session participation. As shown in Tables AI.1 to AI.3, estimates obtained with the two methods are extremely
close, where nonzero differences are likely due to the inclusion of average heating degree days as a covariate in
our 2SLS regression models.
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Table AI.1: Comparing LATE on opt-in from the Signed Up Early versus Late DiD to the Wald estimator
calculated “by hand”.

Model ITT (kWh) Opt-in rate Wald estimator
(WE) derived
by hand (kWh)

LATE on opt-in
(kWh)

Difference between
WE by hand versus
from LATE (kWh)

Overall common effect -0.0897 63.0% -0.1424 -0.1425 0.0001

November 15, 2022 -0.1172 70.5% -0.1662 -0.1662 0.0000
November 22, 2022 -0.1194 64.3% -0.1858 -0.1854 -0.0004
November 30, 2022 -0.1027 63.2% -0.1624 -0.1624 0.0000
December 1, 2022 -0.0906 61.5% -0.1473 -0.1472 -0.0001
December 12, 2022 -0.1009 67.4% -0.1497 -0.1492 -0.0005
January 19, 2023 -0.0501 57.9% -0.0865 -0.0860 -0.0005
January 23, 2023 -0.1337 72.2% -0.1851 -0.1836 -0.0015
January 24, 2023 -0.1063 69.1% -0.1538 -0.1527 -0.0011
January 30, 2023 -0.0515 63.9% -0.0806 -0.0800 -0.0006
February 13, 2023 -0.0755 59.3% -0.1273 -0.1271 -0.0002
February 21, 2023 -0.0754 65.1% -0.1158 -0.1155 -0.0003
March 15, 2023 -0.0554 44.9% -0.1233 -0.1223 -0.0010
March 23, 2023 -0.0503 59.4% -0.0847 -0.0839 -0.0008

Note: We show a series of regression outputs. As labeled in the first column, the first model is the overall common effect, from our main
regressionmodelwhere the post-treatment period is all 29 half-hourswhen a Saving Session happened; the next 13 rows are from the regression
models where the post-treatment period comprises only the half-hours from a specific Saving Session (see Section 2.4.2). In the second column,
we show the ITT estimate from our Signed Up Early versus Late DiD, in kWh (Table AT.5 for the common effect, Table AT.2 for the individual
Sessions). In the third column, we show the opt-in rate for the sample in that Session (or the average opt-in rate across all 13 Sessions, in
the first model estimating the overall common effect). (These opt-in rates are different from Table 1 because the sample here is restricted to
customers included in the regression; exclusions detailed in ??.) In the fourth column, we show the Wald estimator derived from the division
of the ITT by the opt-in rate, which is the equivalent of the compliance rate. In the fifth column, we show the LATE on opt-in derived from
our 2SLS regression instrumenting the interaction between the indicator for Signed Up Early and the indicator for post-treatment (Table AT.6
for the common effect, Table AT.3 for the individual Sessions). In the sixth column, we show the difference in kWh between these two figures
in the fourth and fifth columns. The fact that the differences are nonzero is due to the inclusion of average HDDs as a covariate in our DiD
regressions; however, overall, the two methods of obtaining the impact of opt-in are in very close agreement.
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Table AI.2: Comparing LATE on sign-up from the Octopus versus Bulb DiD to the Wald estimator calculated “by
hand”.

Model ITT Sign-up rate
(Octopus)

Sign-up rate
(Bulb)

Wald esti-
mator (WE)
derived by
hand (kWh)

LATE on sign-up Difference between
WE by hand and
LATE (kWh)

Overall common effect -0.0361 36.7% 1.3% -0.1021 -0.1021 0.0000
November 15, 2022 -0.0336 29.5% 0.0% -0.1139 -0.1137 -0.0002
November 22, 2022 -0.0437 30.5% 0.0% -0.1432 -0.1424 -0.0008
November 30, 2022 -0.0395 31.5% 0.0% -0.1254 -0.1250 -0.0004
December 1, 2022 -0.0328 31.7% 0.0% -0.1035 -0.1033 -0.0002
December 12, 2022 -0.0484 32.6% 0.0% -0.1484 -0.1481 -0.0003
January 19, 2023 -0.0231 34.5% 0.0% -0.0669 -0.0664 -0.0005
January 23, 2023 -0.0616 39.8% 0.0% -0.1548 -0.1536 -0.0012
January 24, 2023 -0.0477 40.4% 0.0% -0.1182 -0.1172 -0.0010
January 30, 2023 -0.0224 41.0% 0.0% -0.0547 -0.0541 -0.0006
February 13, 2023 -0.0342 41.4% 0.1% -0.0827 -0.0838 0.0011
February 21, 2023 -0.0306 41.5% 3.0% -0.0796 -0.0812 0.0016
March 15, 2023 -0.0291 41.0% 6.3% -0.0840 -0.0830 -0.0010
March 23, 2023 -0.0193 41.1% 7.3% -0.0571 -0.0566 -0.0005

Note: We show a series of regression outputs. As labeled in the first column, the first model is the overall common effect, from our main
regressionmodelwhere the post-treatment period is all 29 half-hourswhen a Saving Session happened; the next 13 rows are from the regression
models where the post-treatment period comprises only the half-hours from a specific Saving Session (see Section 2.4.2). In the second column,
we show the ITT estimate from our Octopus v DiD, in kWh (Table AT.4 for the common effect, Table AT.1 for the individual Sessions). In the
third column, we show the sign-up rate for Octopus customers in that Session (or the average sign-up rate across all 13 Sessions, in the first
model estimating the overall common effect). In the fourth column, we show the sign-up rate for Bulb customers in that Session (or the average
sign-up rate across all 13 Sessions, in the first model estimating the overall common effect). In the fifth column, we show the Wald estimator
derived from the division of the ITT by the compliance rate, which in this case is the Octopus sign-up minus the Bulb sign-up rate. In the
sixth column, we show the LATE on sign-up derived from our 2SLS regression instrumenting the interaction between the indicator for being
an Octopus customer and the indicator for post-treatment (Table AT.4 for the common effect, Table AT.6 for the individual Sessions). In the
seventh column, we show the difference in kWh between these two figures in the fifth and sixth columns. The fact that the differences are
nonzero is due to the inclusion of average HDDs as a covariate in our DiD regressions; however, overall, the two methods of obtaining the
impact of sign-up are in very close agreement.
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Table AI.3: Comparing LATE on opt-in from the Octopus versus Bulb DiD to the Wald estimator calculated “by
hand”.

Model ITT Opt-in rate
(Octopus)

Opt-in rate
(Bulb)

Wald esti-
mator (WE)
derived by
hand (kWh)

LATE on opt-in
(kWh)

Difference between
WE by hand versus
from LATE (kWh)

Overall common effect -0.0361 23.3% 1.0% -0.1618 -0.1669 0.0051

November 15, 2022 -0.0336 20.8% 0.0% -0.1616 -0.1613 -0.0003
November 22, 2022 -0.0437 19.5% 0.0% -0.2239 -0.2222 -0.0017
November 30, 2022 -0.0395 19.8% 0.0% -0.1999 -0.1992 -0.0007
December 1, 2022 -0.0328 19.4% 0.0% -0.1694 -0.1691 -0.0003
December 12, 2022 -0.0484 21.8% 0.0% -0.2226 -0.2221 -0.0005
January 19, 2023 -0.0231 19.6% 0.0% -0.1182 -0.1173 -0.0009
January 23, 2023 -0.0616 28.1% 0.0% -0.2192 -0.2174 -0.0018
January 24, 2023 -0.0477 27.4% 0.0% -0.1741 -0.1725 -0.0016
January 30, 2023 -0.0224 25.2% 0.0% -0.0891 -0.0882 -0.0009
February 13, 2023 -0.0342 23.2% 0.0% -0.1478 -0.1506 0.0028
February 21, 2023 -0.0306 25.9% 2.2% -0.1291 -0.1327 0.0036
March 15, 2023 -0.0291 17.6% 3.3% -0.2026 -0.1999 -0.0027
March 23, 2023 -0.0193 23.6% 4.8% -0.1023 -0.1015 -0.0008

Note: We show a series of regression outputs. As labeled in the first column, the first model is the overall common effect, from our main
regressionmodelwhere the post-treatment period is all 29 half-hourswhen a Saving Session happened; the next 13 rows are from the regression
models where the post-treatment period comprises only the half-hours from a specific Saving Session (see Section 2.4.2). In the second column,
we show the ITT estimate from our Octopus versus DiD, in kWh (Table AT.5 for the common effect, Table AT.3 for the individual Sessions). In
the third and fourth columns, we show the opt-in rates for Octopus and Bulb customers in that Session (or the average opt-in rate across all
13 Sessions, in the first model estimating the overall common effect). (These opt-in rates are different from Table 1 because the sample here is
restricted to customers included in the regression; exclusions detailed in FigureAF.14.) In the fifth column, we show theWald estimator derived
from the division of the ITT by the compliance rate, which in this case is the Octopus opt-in minus the Bulb opt-in rate. In the sixth column, we
show the LATE on opt-in derived from our 2SLS regression instrumenting the interaction between the indicator for being an Octopus customer
and the indicator for post-treatment. In the seventh column, we show the difference in kWh between these two figures in the fifth and sixth
columns. The fact that the differences are nonzero is due to the inclusion of average HDDs as a covariate in our DiD regressions; however,
overall, the two methods of obtaining the impact of opt-in are in very close agreement.

AI.4 DiD Placebo Tests

Placebo tests to check parallel trends. We conducted a series of placebo tests to formally test parallel trends. For
our main DiDs, our ”pre“ period comprised the weekdays during October 2022 and the first 14 days of November
2022. In our placebo tests, we restricted our pre-treatment period to weekdays during October 2022 only. We
defined a series of fake Saving Sessions, each of which comprised the ”post“ period in each placebo test. We
defined the following fake Sessions, each of which we code to have occurred 17:00 to 18:00 (1 hour), across each
weekday in November before the first real Saving Session on November 15, 2022 (November 1, 2, 3, 4, 7, 8, 9, 10,
and 11)

We used the Signed Up Early versus Never DiD groups for these placebo tests. In Figure AI.1, we showed
the point estimates and 95% confidence intervals for each of the nine placebo DiDs (in orange). All of the fake
Sessions have difference-in-differences above zero (and confidence intervals that do not cross zero). However,
the effect sizes of 0.0071 to 0.0014 are much smaller than the effect sizes we see in our DiDs of real Sessions (see
Table AT.4) of -0.0897, -0.0972, and -0.1021 from signed-up customers per half-hour. In Figure AI.1, we show the
effects of sign-up estimated from each of our three DiDs (see Table AT.4) for scale. We believe the small positive
DiD is evidence of slight differences in trends between the Signed Up Early versus the Never Signed Up groups
(in comparing November 17:00 to 18:00 consumption to October 09:00 to 22:00 consumption.)
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Figure AI.1: Coefficient plot for nine placebo tests.

Note: Coefficient (and 95% confidence intervals) on the difference-in-differences coefficient in a series of DiDs for each of nine fake Saving
Session regressions in November, where the post-treatment period in each regression is customers’ half-hourly consumption during each of
the nine fake Saving Sessions. We use the Signed Up Early versus Never DiD groups for these placebo tests. We show the effects of sign-up
estimated from each of our three DiDs (see Table AT.4) for scale; their solid lines are the point estimates from each DiD, and the dotted lines
each DiD’s 95% confidence interval upper and lower limits.

AI.5 DiD alternative pre-treatment period specification

Examining how DiD results change when using a different pre-treatment period. The pre-treatment period in
our DiDs comprised all half-hours between 09:00 to 22:00 from October 1, 2022 through November 14, 2022. We
re-ran the DiDs using a pre-treatment period comprised of half-hours between 16:00 to 19:00 on the same days
(October 1, 2022 through November 14, 2022). We show both sets of DiDs’ results in Figure AI.2. The results are
similar between the two specifications of the pre-treatment period.
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Figure AI.2: Coefficient plot for nine pre-trends placebo tests.

Note: In the first two DiDs (Signed Up Early versus Never, and Signed Up Early versus Late), the effect of sign-up is an ITT estimate, while
the effect of opt-in is a LATE. Octopus versus Bulb’s ITT estimate is the effect of being invited; the effect of sign-up and of opt-in are LATEs.
The main specification (in navy) pre-treatment period is weekday half-hours from 09:00 to 22:00 in October 2022 and the first two weeks of
November 2022. The alternate specification (in purple) pre-treatment period is weekday half-hours from 16:30 to 19:30.
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AI.6 Examining how our DiD results compare to the official NGESO “pre-post” methodol-
ogy (i.e., “P376”).

In Tables AI.4 and AI.5, we show how our DiD results compare to the official methodology endorsed by NGESO
(i.e., “P376”). As described in Section 2.4.1, there are two versions of the P376 methodology, “unclipped” (a
modified pre-post methodology) and “clipped” (where demand increases are clipped to 0).

Table AI.4: Demand reduction (kWh per half-hour) according to our DiDs, unclipped P376, and clipped P376.

Group N Demand reduction
from DiD

Avg unclipped P376 de-
mand reduction (% dif-
ference from DiD)

Avg clipped P376 de-
mand reduction (% dif-
ference from DiD)

Signed up never 654062 -0.0008 0.1132
Signed up early 332195 0.0897 0.0927 (3.4%) 0.1664 (85.6%)

Signed up late 12438 -0.0030 0.1138
Signed up early 331992 0.0972 0.0995 (2.4%) 0.1696 (74.5%)

Bulb 197307 0.0010 0.1186
Octopus 1137028 0.0361 0.0312 (-13.7%) 0.1314 (263.9%)

Note: We show the difference-in-difference coefficient from our three DiDs’ ITT analyses, compared to the same analyses’ “control” and “treat-
ment” groups’ demand reduction as measured by the unclipped and clipped versions of NGESO’s prescribed methodology for DFS providers,
shorthanded as “P376”. In parentheses after the NGESO methodology estimates, we show the percent difference compared to our DiDs’ es-
timates. We see minimal bias from the unclipped version of this method. When examining the full treatment groups in our DiDs, we see
substantial bias from the clipped P376 method. However, this bias mostly comes from customers who have not opted in to Sessions in our
DiDs’ treatment groups.

Table AI.5: Demand reduction (kWh per half-hour) among opt-ins only according to DiDs, unclipped P376, and
clipped P376.

Group N Demand reduction
from DiD (LATE on
opt-in)

Avg unclipped P376 de-
mand reduction (opt-
ins only)

Avg clipped P376 de-
mand reduction (opt-
ins only)

Signed Up Early versus
Never

332195 0.1425 0.1311 (-8.0%) 0.1843 (29.3%)

Signed Up Early versus
Late

331992 0.1483 0.1381 (-6.9%) 0.1857 (25.2%)

Octopus versus Bulb 1137028 0.1669 0.1273 (-23.7%) 0.1817 (8.9%)

Note: We show the difference-in-difference coefficient from our three DiDs’ local average treatment effect on opt-in, compared to the average
demand reduction as estimated by the NGESO “P376” methodology for opted in customers from each DiD’s “treatment” group. We show two
versions of the NGESO methodology: unclipped and clipped. In parentheses after the NGESO methodology estimates, we show the percent
difference compared to our DiDs’ estimates. Our DiDS’ LATE on opt-in are on average higher than demand reduction estimated by unclipped
P376 among opt-ins, though still lower than the demand reduction estimated by clipped P376 among opt-ins.

AI.7 How moral hazard and “gaming” of baselines affect our analyses

A potential concern about the methodology NGESO prescribed to calculate demand reduction (Section 2.4.1) is
that it may induce moral hazard among customers. Specifically, customers might have changed their behavior to
obtain higher baselines against which their DFS provider estimated their demand reduction.

There were two theoretical techniques to increase a baseline:
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1. First, customers could have increased consumption during the in-day adjustment period once a Session was
called.

2. Second, customers could have increased their consumption in the peak period on days without Saving Ses-
sions, on the assumption that baselines for most Sessions would derive from their consumption during non-
Session days’ peak half-hours.

Our DiDs are robust to both of these types of moral hazard:

1. Our DiDs did not incorporate an in-day adjustment.

2. Our DiDs’ pre-treatment period was composed of weekdays during October and the first half of November.
Some customers might have tried to game the NGESO-prescribed baseline by increasing their peak-time
consumption during the Saving Sessions period from November 15, 2022 through March 23, 2023. However,
their doing so would not have affected our estimation of their pre-Sessions consumption.

We also conducted placebo tests using November weekdays 17:00 to 18:00 as “placebo” Saving Sessions (Sec-
tion AI.4) and found small positive difference-in-differences in the consumption of the Signed up Early versus
Never Signed Up customers. We noted that these effects were evidence of small differences in trends between the
Signed Up Early versus the Never Signed Up groups in comparing November 17:00 to 18:00 consumption to Oc-
tober 09:00 to 22:00 consumption. However, it is possible that these effects were also or instead evidence of some
efforts by customers to increase their peak consumption before any Sessions began. In this case, however, our DiD
estimates of demand reduction would be conservative underestimates, rather than anti-conservative overestimate.

As noted in Section 5.1, our DiD estimates of demand reduction were ≈13% lower than the official NGESO
P376 estimates. One might interpret this fact as a suggestion that customers gamed baselines successfully and
fooled the official NGESO P376 estimates of their demand reduction. However, the NGESO P376 methodology for
demand reduction among customers who opted in actually delivers lower estimates of demand reduction when
those estimates refrain from clipping to 0 any “negative” demand reduction (as discussed in Section 2.4.1). Only
the clipped demand reduction figures are overestimates. For these reasons, we believe that clipping, not gaming,
is the major contributor to the official NGESO P376 deriving slight overestimates of demand reduction.

Finally, note that there are practical difficulties associated with both gaming techniques. Successfully gaming
the in-day adjustment requires specific knowledge of NGESO’s P376 methodology. This is also true regarding
customers increasing their peak-time consumption in order to increase their in-Session baselines. In addition,
recall that customers did not knowwhich days Sessionswould be called, nor which times on those days the Session
would occur. Two of the 13 Sessions occurred in the morning, and the other 11 occurred at different times between
16:30 and 19:30. All occurred on weekdays, but this weekday-only pattern was not known to customers before the
Sessions finished. Meanwhile, recall that the baseline is derived from the relevant half-hours during the 10 most
recent working days where smart meter readings are available.63

Even if a customer somehow knew that a Saving Session would occur on a specific day, and knew even which
half hours on that day the Session would occur, it would have been expensive to increase their consumption during
those half-hours on the previous 10 working days. Indeed, at a marginal price per kWh for the typical Octopus
smart meter customer of £0.34/kWh, it would have costmore to increase consumption by 1 kWh in each of those 10
days (£3.40 in total) than the customerwould have gained from an extra 1 kWhof baseline, where the remuneration
was typically £2.25 per kWh of demand reduction during the Saving Session. The consumer might still benefit if
the extra electricity in the baseline period was useful to them. However, overall, we believe that the baseline period
incorporating 10 working days, and the fact that Session timings are not known to customers until the day before

63The P376 baselining formula is slightly different for non-working days.
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a Session, makes it logistically complex and expensive for most customers to adjust their baselines upward by
intentionally consuming more electricity in the relevant baseline half-hours.

AI.8 RDD: Extended Details

AI.8.1 Background: Known Assignment Mechanism, But No Randomization

Like the other Demand Flexibility Service (DFS) events delivered by Octopus Energy throughout the Winter of
2022-23, Octopus Energy customers who agreed to participate in the Saving Session on February 13 should have
received a notice the day prior. However, notices were delayed (Figure 8). And they were ultimately sent in
accordance with the ordering of customers’ account IDs (i.e., a string of integers ranging in length) which are, in
turn, a function of each customer’s tenure — where customers new to Octopus Energy generally have account IDs
that are larger in magnitude (Figure AF.16).

To clarify, opt-in notices for Saving Sessionswere distributed to customers in scheduled batches using a roster of
account IDs. Batching is a standard practice used to minimize error in the delivery of messages to a large number
of customers. And, as a general rule, Octopus Energy does not release batched communications to customers
between 20:00 and 8:00. Nevertheless, the process by which messages to customers are generated, batched, and
sent is inexact. This is owing to idiosyncratic server delays — where opt-in notices for the Saving Session on
February 13were deferred to an unusual degree into the evening of the 12th and through to themorning of the 13th
(Figure 8). Thus, some DFS-participating Octopus Energy customers received day-ahead opt-in notices whereas
others received an opt-in notice for the February 13 Saving Session sometime before 1PM on the day of the Saving
Session itself (i.e., intraday notice).

Note well that account IDs were not manually batched. Instead, a batch size was first manually chosen. And
then the internal platform Octopus Energy uses for external communication was scheduled to dispense batches
of notices in order of the magnitude of customers’ account IDs. Still, owing to the batching process and standard
server lag, account ID does not strictly (i.e., monotonically) increase with time (Figure AF.16).64 Furthermore,
owing to the above-mentioned imperfect nature of message delivery in relation to Octopus Energy’s customer-
communication platform, batched messages began to be sent again around 7:45 on February 13 (Figure 8). Never-
theless, we use 8:00 as our temporal cutoff as this is the point at which Octopus Energy formally allows customer
contact.

AI.8.2 Specification and Bandwidth Choice Given ‘Donut-Hole’ RDD

To fit the models for our regression discontinuity design (RDD), we only use a 1st-degree polynomial (i.e., a linear
fit) for our centered assignment variable (Ai−C) and amultiplicative interaction between (Ai−C) and our binary
treatment to allow ”local“ regression lines on either side of our cutoff for treatment C. We prefer this simple
model specification in light of warnings of overfitting and nonsensical conclusions when performing regression
discontinuity using higher-order polynomials (see Huntington-Klein (2021, p. 516-518) as well as Gelman and
Imbens (2019), Gelman and Zelizer (2015)).

Indeed, we prefer a less-flexible fit reflective of information further from the cutoff C. This owing to our use of
”donut-hole“ RDD (Barreca et al., 2011, 2016) whereby we must necessarily extrapolate the regression line forward
across the region of our account-ID-based running variable to the immediate left of our cutoff for which we ex-
clude all Octopus Energy customers sent overnight notices (Figure 8). For this reason, we also eschew weighting

64Details of themessage-delivery process obtainedduring conversation between the authors of this research and technical experts atOctopus
Energy Group.
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observationswith values for the assignment variable closer to the threshold duringmodel fitting. Instead, all obser-
vations are weighted equally (i.e., a ”uniform kernel“) and we simply present models using multiple bandwidths
(wide and narrow) following the recommendations of Lee and Lemieux (2010).

More formally, given our use of donut-hole RDD, we estimate one pair of optimal asymmetric bandwidths h

using the techniques of Cattaneo and colleagues (Calonico et al., 2017, Cattaneo et al., 2019, Forthcoming, Catta-
neo and Vazquez-Bare, 2017) as implemented in the newer, Python-based version of their popular STATA function
”rdbwselect”(Calonico et al., 2017). The pair of bandwidths is referred to as ”optimal“ as it is automatically es-
timated given: (a) the data; (b) a polynomial order for points estimation and bias correction (here, respectively,
the defaults of 1st- and 2nd-degree); (c) a kernel weighting function (here, uniform), and (d) a means of calculat-
ing variance (here, K-nearest-neighbours, where K = 3, the default value), amongst other factors (Cattaneo and
Vazquez-Bare, 2017). We limit our attention to a pair of optimal bandwidths expected to minimize mean-squared
error or ”MSE“ (i.e., the average of the squared deviations between predicted and observed values). However, we
probe the sensitivity of our results by fitting ancillary models wherein we increase the size of each MSE-optimal
bandwidth by a factor of 1.5 and a factor of 2 (both arbitrarily chosen) to expand the account IDs we use for model
fitting. We use ”rdbwselect“ to obtain our pair of MSE-Optimal bandwidths without the use of pre-treatment
covariates.

Note that an optimal bandwidth is specific to an outcome variable (Cattaneo and Vazquez-Bare, 2017, p. 143).
Thus, we use two pairs of asymmetric MSE-optimal bandwidths. The first pair is specific to our models of in-
Session consumption (hLeft, MSE-Optimal, Consumption and hRight, MSE-Optimal, Consumption), and the second is specific to our
models of Session participation (hLeft, MSE-Optimal, Opt-in and hRight, MSE-Optimal, Opt-in).

To actually filter our data, we construct a range of valid account IDs by taking our constructed ID-based thresh-
old C = 2, 454, 839 and subtracting hLeft and adding hRight. The bandwidths obtained using ”rdbwselect“ are as
follows:

• hLeft, MSE-Optimal, Consumption = 244, 339.92

• hRight, MSE-Optimal, Consumption = 495, 274.84

• hLeft, MSE-Optimal, Opt-in = 489, 367.98

• hRight, MSE-Optimal, Opt-in = 448, 440.77

And, to show how our results behave under different ranges of our running variable, we expand these band-
widths as follows:

• hLeft, MSE-Optimal, Consumption = (244, 339.92× 1.5)

• hRight, MSE-Optimal, Consumption = (495, 274.84× 1.5)

• hLeft, MSE-Optimal, Consumption = (244, 339.92× 2)

• hRight, MSE-Optimal, Consumption = (495, 274.84× 2)

• hLeft, MSE-Optimal, Opt-in = (489, 367.98× 1.5)

• hRight, MSE-Optimal, Opt-in = (448, 440.77× 1.5)

• hLeft, MSE-Optimal, Opt-in = (489, 367.98× 2)

• hRight, MSE-Optimal, Opt-in = (448, 440.77× 2)

Note that we multiply, as opposed to divide, hLeft by 1.5 and 2 so as to subtract a larger number of account IDs
from CID = ”2,454,839“, in turn creating lower bandwidth bounds with which to filter our data that are closer to
zero (n.b., the lowest account ID is ”2“). Dividing would instead shift our lower bandwidth bounds to the right.

Finally, note that we observe balance on relevant pre-treatment covariates (e.g., historical energy usage) when
using our MSE-optimal bandwidth (see Figure AI.3).
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AI.9 RDD and Field Trial: Balance on Pre-Treatment Covariates

As discussed by Gelman et al. (2020), under a strict interpretation, balance relate to similarity in the distributions of
potential-outcomes-relevant pre-treatment variables across levels of a treatment variable — not merely summary
statistics (e.g., the mean). Moreover, hypothesis tests for ”statistically significant“ differences across treatment
groups in experiments and quasi-experiments have been subject to repeated critique under the view that balance
is a property of a give sample, not the population from which it is drawn (Harvey, 2018, Imai et al., 2008, Senn,
1994).

Accordingly, we eschew comparisons like t-tests to instead qualitatively compare distributions of pre-treatment
covariates across experimental groups using quantile-quantile (Q-Q) plots, following Imai et al. (2008). As our
concern is energy-consumption related behavior, we narrowly focus on historical energy usage — i.e., Total P376
(Unadjusted) Baseline (kWh) and Estimated Annual Consumption (kWh). As mentioned in the main text, the
former is an unweighted average of consumption during the same half-hour of the day during the ten most-recent
working days as governed by the the P376 amendment to Great Britain’s electricity balancing and settlement code.
And the latter is Octopus Energy’s predicted customer consumption based on meter readings over one year.

Given the large size of our data, which are drawn from across Great Britain, we create Q-Q plots specific to
region. For this reason, we also consider balance on the degree to which an Octopus Energy customer’s postcode
is deprived using an index of multiple deprivation (IMD) which combines, in a weighted manner, multiple facets
of poverty (e.g., crime, barriers to housing, health, amongst other factors).65 Last, for our RDD, we also include
Q-Q plots of account ID and customer tenure to show the by-design discontinuity of the former and the sneaking
overlap of the latter.

65For further details, see the UK Ministry of Housing, Communities & Local Government.
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Figure AI.3: Small-multiple Q-Q Plot for balance of relevant pre-treatment covariates across non-randomized
experimental groups depending on MSE-optimal bandwidth and outcome (i.e., session consumption or session
participation). For the Index of Multiple Deprivation (IMD), more deprived areas have lower postcode ranks.
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Figure AI.4: Small-multiple Q-Q Plot for balance of pre-treatment covariates across randomized experimental
conditions. For the Index of Multiple Deprivation (IMD), more deprived areas have lower postcode ranks.

AI.10 Assumptions About Electricity Transmission Constraints During DFS Events

DFS events reduced the generation required to by NGESO to ensure sufficient reserve capacity. To estimate their
cost-effectiveness against alternative options available to NGESO, as well as their welfare impacts, we first identify
the most likely prevented fuel. At times when transmission lines are constrained, it is possible that demand re-
duction in areas of the country with sufficient reserve would be less useful than demand reduction in areas of the
country without sufficient reserve. Under these conditions, Great Britain’s electricity market should no longer be
considered as having a national marginal generator, but instead multiple regional ones.
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For example, grid congestion mostly occurs between Scotland and England, and is usually caused by excess
wind generation (Savelli et al., 2022) in Scotland. Local electricity savings ’behind’ those boundaries, in Scotland,
are unlikely to reduce carbon emissions to the same extent that savings in England would. With this in mind,
we estimated to what extent Great Britain’s transmission grid was operating at capacity during the 13 Saving
Sessions. In Figure AI.5 we show day-ahead relative line loads of Great Britain’s main constraint groups, each
point representing the 29 half hours during Saving Session (data taken fromNational Grid (2023a)). We call a line
congested when a relative line load exceeds a threshold of 0.95.

Figure AI.5: Power flow across main constraint groups in the GB transmission grid represented as flow relative to
physical limit during Saving Sessions.
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Note: Over the 29 half-hour periods of the 13 Saving Sessions, data from day-ahead relative line loads of Great Britain’s main constraint groups
shows that only 6 half hours were considered to be “congested” -assuming that the transmission lines are “congested” when the relative
transmission line load is above 95% of its capacity-. If defined as above, only the SHARN and SSEN-S constrain groups show congestion
during the Saving Sessions, while the other lines show relative transmission line load between 20 and 80% in most of the instances.

We found that during the 29 half-hours when Saving Sessions occurred, only 6 half-hours were congested.
Given this low rate of congestion, and for simplicity, in our cost-effectiveness and welfare analyses, we considered
Great Britain as having a national marginal generator.
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AF Appendix Figures

AF.1 DiD Coefficient Plots in kWh

Figure AF.1: Coefficient plot of the impact of sign-up on consumption during Saving Sessions based on our three
DiDs.

Note: Coefficient (and 95% confidence intervals) on the difference-in-differences coefficient in our three DiDs for each of the 13 individual
Saving Session regressions, where the post-treatment period in each regression is customers’ half-hourly consumption during each of the 13
Saving Sessions. In the Octopus versus Bulb DiD, the coefficient is on the local average treatment effect (LATE) of sign-up, a variable equal to
1 if a customer had signed up to Saving Sessions by that Session, else 0. We interpreted these coefficients as the causal impacts of being signed
up to Saving Sessions by the date of the Session.
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Figure AF.2: Coefficient plot of the impact of opt-in on consumption during Saving Sessions based on our three
DiDs.

Note: Coefficient (and 95% confidence intervals) on the difference-in-differences coefficient in our three DiDs for each of the 13 individual
Saving Session regressions, where the post-treatment period in each regression is customers’ half-hourly consumption during each of the 13
Saving Sessions. In each DiD, the coefficient is on the local average treatment effect (LATE) of opt-in, a variable equal to 1 if a customer opted
in to the Session, else 0. We interpreted these coefficients as the causal impacts of opting in to Saving Sessions on the date of the Session.
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AF.2 Examining Demand Reduction as Measured by NGESOMethodology Depending on
Whether Customers Participated

Figure AF.3: Histograms of demand reduction, measured using P376 methodology, by customer participation or
non-participation.

Note: Using the “unclipped” P376 methodology prescribed by NGESO results, we see that customers who signed up and opted in for Saving
Sessions presented a clear average demand reduction of 0.395 kWh in each half hour of the Saving Sessions. Non-participating customers
(customers who signed up but did not opt in, invited Octopus Energy customers who never signed up, and Bulb customers who did not sign
up) also show a small demand reduction, according to this methodology, as can be seen by the fact that the histograms for even these customers
are not centered around 0. This result suggests that the baselining methodology of choice may overestimate demand reduction.
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Figure AF.4: Average per-customer “clipped” versus “unclipped” demand reduction, in each Saving Session.

Note: We show clipped versus unclipped demand reduction, across the 13 Saving Sessions Octopus Energy ran between November 2022 and
March 2023. The outcome here is demand reduction per customer who had signed up to Saving Sessions, regardless of whether they had opted
in to a given Session.

AF.3 Descriptive Statistics of Groups Involved in our Difference-in-differences

Figure AF.5: Region, smart tariff, and EPC grade, by Signed Up Early versus Never customers.

Note: Comparison between Octopus Energy customers that signed up before the first Saving Session (red) and the ones who never signed up
(blue) on customers’ geographical areas, type of tariff they are on (smart vs not smart), EPC rating, and postcode deprivation level.
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Figure AF.6: Region, smart tariff, and EPC grade, by Signed Up Early versus Late.

Note: Comparison between Octopus Energy customers that signed up before the first Saving Session (red) and the ones who signed up after
01/02/2023 (blue) on customers’ geographical areas, type of tariff they are on (smart vs not smart), EPC rating, and postcode deprivation level.

Figure AF.7: Region, smart tariff, and EPC grade, by Octopus versus Bulb customers.

Note: Comparison between Octopus Energy customers (red) and Bulb customers (blue) on customers’ geographical areas, type of tariff they
are on (smart vs not smart), EPC rating, and postcode deprivation level.
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Figure AF.8: Estimated annual electricity consumption distributions: Signed Up Early versus Never.

Note: Overlapping histogram of Octopus Energy customers that signed up before the first Saving Session (red; mean 3682.0 kWh; medan 3175.9
kWh) versus thosewhowere invited but never signed up (blue; mean 3643.5 kWh; median 3115.5 kWh) in terms of customers’ estimated annual
electricity consumption.
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Figure AF.9: Estimated annual electricity consumption distributions: Signed Up Early versus Late.

Note: Overlapping histogram of Octopus Energy customers that signed up before the first Saving Session (red; mean 3682.2 kWh; median
3176.0 kWh) versus those who signed up after 01/02/2023 (blue; mean 3720.5 kWh; median 3117.6 kWh) in terms of customers’ estimated
annual electricity consumption.
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Figure AF.10: Estimated annual electricity consumption distributions: Octopus invited versus smart-meter Bulb
customers.

Note: Overlapping histogram of Octopus Energy customers invited to Saving Sessions (red; mean 3653.9 kWh; median 3133.2 kWh) versus
smart-meter Bulb customers (blue; mean 3568.4 kWh; median 3087.2 kWh) in terms of customers’ estimated annual electricity consumption.
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AF.4 Flow Diagrams of our DiD Samples

Figure AF.11: Invitation and sign-up flowchart.
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Figure AF.12: Flow diagram showing sample in our Signed Up Early versus Never DiD.
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Figure AF.13: Flow diagram showing sample in our Signed Up Early versus Late DiD.
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Figure AF.14: Flow diagram showing sample in our Octopus versus Bulb DiD.
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AF.5 Event Study of the Six Saving Sessions that Spanned 17:00 to 18:00 or 17:30 to 18:30:
Alternative Visualization

Figure AF.15: Event study of the six Saving Sessions that spanned 17:00 to 18:00 or 17:30 to 18:30.

Note: We show the coefficient on the DiD from a series of regressions using the Signed Up Early versus Never DiD sample. We interpret this
coefficient as the demand reduction during the relevant half-hours caused by signing up to Saving Sessions (an ITT effect diluted by incomplete
opt-in). The times “0” and “0.5” on the x-axis are from a regression where the post-treatment period is half-hourly consumption during Saving
Sessions – two half-hours per Session. All other points on the x-axis are from regressions where the post-treatment period is a single half-hour
– X hours before the Session started, if before, or X hours after the Session finished, if after. The whiskers around each point show the 95%
confidence interval around the DiD coefficient.
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AF.6 RDD: Examination of customer characteristics by time of opt-in notice receipt

Figure AF.16: “Dot plot” of “binned” averages for response variables and pre-treatment covariates versus
temporal running variable.

Note: Averages across Octopus Energy customers who were sent their first (possibly only) opt-in notice for the 10th Saving Session (February
13, 2023) in the same 15-minute window or “bin”. Windows wherein zero opt-in notices were sent not shown. The two vertical dashed lines
indicate the temporal cutoff for “overnight notices” (left) and treatment (i.e., intraday notice; right;CTime). Shaded region denotes timewindow
corresponding to the range of account IDs used to fit our models of consumption (see Section AI.8).
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AF.7 Survey Responses: Analysis and Visualizations

Figure AF.17: Characteristics of Signed-up Saving Sessions Customers and Survey Respondents.

Note: Comparison betweenOctopus Energy customers that signed up to Saving Sessions (Blue) andOctopus Energy customerswho responded
to either the survey sent onMarch 20, 2023 or the survey sent on April 19, 2023 (Red). The two sets of respondents do not overlap. Comparisons
are based on the percentage of customers in each of the aforementioned groups that: (a) have a “smart” tariff; (b) have various levels of
estimated annual electricity consumption (EAC); (c) live in a postcode with various levels of deprivation; (d) opt into various numbers of
Saving Sessions; and (e) that ear various cash values based on their demand reduction during the Sessions they opted into.

Figure AF.18: Responses (April 19, 2023 Survey) to “How interested would you be to keep doing Saving Sessions
in the future?”.
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Figure AF.19: Responses (March 20, 2023 Survey) to “If we ran Saving Sessions (or something similar) again
next Winter, how many Sessions would you be interested in participating in per week?”.
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Figure AF.20: Demand shifting behavior by standard vs smart tariff.

Note: Responses to the question “What best described how you participated” show that most of the consumers for both standard and smart
tariffs, 75% and 67% respectively, manually switched off appliances during the session and used them at other times. The remainder for each
type of electricity tariff used an automated response, scheduling appliances to come on before or after the session.

Figure AF.21: Demand shifting method by estimated annual electricity consumption level.

Note: Responses to the question “What best described how you participated” show that most of the consumers, regardless of their level of
estimated annual consumption, manually switched off appliances during the session and used them at other times. All three categories are
slightly above the 70% level of response. The remainder for each type of estimated annual electricity consumption used an automated response,
scheduling appliances to come on before or after the session, being high estimated annual consumption the sub-group of respondents who
presented the highest level of automated response, above 25%.
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Figure AF.22: Demand shifting behavior by customers’ postcode index of multiple deprivation level.

Note: Responses to the question “What best described how you participated” show that most of the consumers for different indices of multiple
deprivation, manually switched off appliances during the session and used them at other times. All of these sub-groups presented around 70%
of respondents who manually switched off appliances. The remainder for each index of multiple deprivation used an automated response,
scheduling appliances to come on before or after the session, being the “Very low” index the onewhich presents the highest level of automation,
slightly above 20%.

Figure AF.23: Change in consumption before Saving Session.

Note: Responses to the question “Did participating in a Saving Session change what you did before the Session?” showed around 60% of
the participants did not change their consumption before the session irrespective of the average remuneration they received from the session,
i.e. irrespective of the amount of demand reduction they provided. Around 25% of the respondents did use “A little more” or “A lot more”
electricity before the session for each of the sub-groups based on the average remuneration. The remainder used “A little less” or “A lot less”.
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Figure AF.24: Change in consumption after Saving Session.

Note: Responses to the question “Did participating in a Saving Session change what you did after the Session?” showed around 50% of the
participants did not change their consumption after the session irrespective of the average remuneration they received from the session, i.e.
irrespective of the amount of demand reduction they provided. Around 25% of the respondents did use “A little more” or “A lot more”
electricity after the session for each of the sub-groups based on the average remuneration except for the lowest level of remuneration (less
than 50p) of whom 18% of responses used less energy after the session. The remainder used “A little less” or “A lot less”, the lowest average
remuneration subgroup (less than 50p) shows again a deviation from the rest of the sub-groups, in this case up to 34% of the respondents used
less electricity after the session.
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Figure AF.25: Answers to the question “What actions did you do to save energy during Saving Sessions?”.

Note: Responses to the question “What actions did you do to save energy during Saving Sessions?” show that participants mostly switched off
or plugged off appliances and/or tried to use large appliances at other times of the day to avoid consuming energy during the sessions. The
most chosen option was “Turned off lights”, chosen by 68% of the respondents. Interestingly, all the answers related to alternative sources of
heat or turning off electric heating were less chosen by participants, all of them below 20% of respondents.
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Figure AF.26: Behavioral changes by remuneration level.

Note: Responses to the question “What actions did you do to save energy during Saving Sessions?” showed interesting results when these
are analyzed over different levels of average remuneration. The group of customers that received less than 50p as an average remuneration
per session did present lower rates of behavioral changes over all the categories - 1) Changed EV charging, 2) Changed or turned off lights, 3)
Changed use of entertainment device, and 4) Change use of large appliances- compared to other customers who got higher incentives. All the
different sub-groups based on average remuneration per Saving Session showed a comparable distribution of rates, being option 2 and 4 above
the most chosen. There is also an interesting correlation with higher rates of option number one and larger average remunerations per saving
session.
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Figure AF.27: Behavioral changes by estimated annual electricity consumption level.

Note: Responses to the question “What actions did you do to save energy during Saving Sessions?” showed limited to no variation across
different groups of customers based on their average electricity consumption throughout the year. All the categories - 1) Changed EV charging,
2) Changed or turned off lights, 3) Changed use of entertainment device, and 4) Change use of large appliances- show a similar distribution
for respondents with low or high consumption. The only noticeable difference is for option 1, preferred for customer with high consumption
versus low consumption levels.

Figure AF.28: Proportion of customers who said they tended to be already away from the home during Saving
Sessions.
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AT Appendix Tables

AT.1 Summary of DiDs’ ITT and LATE Results

Table AT.1: Impact (kWh per half-hour) of being invited to sign up.

Saving Session DiD strategy: Octopus
versus Bulb

2022-11-15 -0.0336 (0.0008)
2022-11-22 -0.0437 (0.001)
2022-11-30 -0.0395 (0.0008)
2022-12-01 -0.0328 (0.001)
2022-12-12 -0.0484 (0.0008)
2023-01-19 -0.0231 (0.0008)
2023-01-23 -0.0616 (0.001)
2023-01-24 -0.0477 (0.0008)
2023-01-30 -0.0224 (0.0008)
2023-02-13 -0.0342 (0.001)
2023-02-21 -0.0306 (0.0008)
2023-03-15 -0.0291 (0.001)
2023-03-23 -0.0193 (0.0008)

Note: Coefficient (and standard errors, in parentheses) on the difference-in-differences in our Octopus versus Bulb DiD for each of 13 regres-
sions, where the post-treatment period in each regression is customers’ half-hourly consumption during each of the 13 Saving Sessions. We
interpreted this coefficient as the causal impact of being invited to sign up to Saving Sessions.

Table AT.2: Impact (kWh per half-hour) of signing up.

Saving Session Signed Up Early versus
Never

Signed Up Early versus
Late

Octopus versus Bulb

2022-11-15 -0.1172 (0.0005) -0.1126 (0.0028) -0.1137 (0.0027)
2022-11-22 -0.1194 (0.0008) -0.1236 (0.0033) -0.1424 (0.003)
2022-11-30 -0.1027 (0.0008) -0.105 (0.0036) -0.125 (0.0029)
2022-12-01 -0.0906 (0.0008) -0.0839 (0.0033) -0.1033 (0.0028)
2022-12-12 -0.1009 (0.0008) -0.1119 (0.0036) -0.1481 (0.003)
2023-01-19 -0.0501 (0.0005) -0.0446 (0.0028) -0.0664 (0.0023)
2023-01-23 -0.1337 (0.0008) -0.1302 (0.0038) -0.1536 (0.0026)
2023-01-24 -0.1063 (0.0008) -0.0997 (0.0033) -0.1172 (0.0022)
2023-01-30 -0.0515 (0.0008) -0.0494 (0.0026) -0.0541 (0.0017)
2023-02-13 -0.0755 (0.0013) -0.0838 (0.0025)
2023-02-21 -0.0754 (0.001) -0.0812 (0.0024)
2023-03-15 -0.0554 (0.0008) -0.083 (0.0027)
2023-03-23 -0.0503 (0.0008) -0.0566 (0.0024)

Note: Coefficient (and standard errors, in parentheses) on the difference-in-differences in our three DiDs for each of 13 regressions, where the
post-treatment period in each regression is customers’ half-hourly consumption during each of the 13 Saving Sessions. In the Octopus versus
Bulb DiD, the coefficient is on the local average treatment effect (LATE) of sign-up, a variable equal to 1 if a customer had signed up to Saving
Sessions by that Session, else 0. We interpreted these coefficients as the causal impacts of being signed up to Saving Sessions by the date of the
Session.
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Table AT.3: Impact (kWh per half-hour) of opting in.

Saving Session Signed Up Early versus
Never

Signed Up Early versus
Late

Octopus versus Bulb

2022-11-15 -0.1662 (0.0008) -0.1597 (0.0042) -0.1613 (0.0038)
2022-11-22 -0.1854 (0.001) -0.1918 (0.0052) -0.2222 (0.0046)
2022-11-30 -0.1624 (0.0011) -0.166 (0.0055) -0.1992 (0.0046)
2022-12-01 -0.1472 (0.0011) -0.1363 (0.0054) -0.1691 (0.0047)
2022-12-12 -0.1492 (0.0011) -0.1655 (0.0055) -0.2221 (0.0045)
2023-01-19 -0.086 (0.0011) -0.0765 (0.005) -0.1173 (0.0041)
2023-01-23 -0.1836 (0.001) -0.1789 (0.0051) -0.2174 (0.0036)
2023-01-24 -0.1527 (0.001) -0.1431 (0.0047) -0.1725 (0.0033)
2023-01-30 -0.08 (0.0008) -0.0768 (0.004) -0.0882 (0.0027)
2023-02-13 -0.1271 (0.002) -0.1506 (0.0045)
2023-02-21 -0.1155 (0.0015) -0.1327 (0.004)
2023-03-15 -0.1223 (0.0017) -0.1999 (0.0065)
2023-03-23 -0.0839 (0.0011) -0.1015 (0.0043)

Note: Coefficient (and standard errors, in parentheses) on the difference-in-differences in our three DiDs for each of 13 regressions, where
the post-treatment period in each regression is customers’ half-hourly consumption during each of the 13 Saving Sessions. In each DiD, the
coefficient is on the local average treatment effect (LATE) of opt-in, a variable equal to 1 if a customer opted in to the Session, else 0. We
interpreted these coefficients as the causal impacts of opting in to Saving Sessions on the date of the Session.

Table AT.4: Difference-in-differences results.

Signed Up Early Never Signed Up Early Late Octopus versus Bulb
ITT -0.0897 (0.0003) -0.0972 (0.0018) -0.0361 (0.0005)
LATE on sign-up – – -0.1021 (0.0014)
LATE on opt-in -0.1425 (0.0006) -0.1483 (0.0029) -0.1669 (0.0022)
Mean kwh per half-
hour during SS among
“control” group

0.376 0.373 0.383

ITT as % of mean -23.88% -26.05% -9.43%
LATE on sign-up as %
of mean

– – -26.67%

LATE on opt-in as % of
mean

-37.94% -39.74% -43.59%

Note: The results of the three difference-in-differences (DiDs)with 1) Customerswho signed up before the 1st Saving Session versus customers
who never signed up, 2) Customers who signed up before the 1st Saving Session versus customers who signed up after the 9th Saving Session
and 3) Octopus customers invited to sign up versus smart-meter Bulb customers (who were not invited to participate in the DFS).
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AT.2 DiD Regression Outputs: Full Tabular Results for First DiD Strategy

Table AT.5: DiD 1 (Signed Up Early versus Never) results: ITT effect on consumption (kWh per half-hour)
during Saving Sessions.

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2509 0.001 455.587 0.000 0.250 0.252
Sign-up -0.0088 0.000 -29.367 0.000 -0.009 -0.008
Saving Session 0.1989 0.002 119.474 0.000 0.196 0.202
(Saving Session) ∗ Sign-up -0.0897 0.000 -240.062 0.000 -0.090 -0.089
Average HDDs -0.1653 0.005 -34.920 0.000 -0.175 -0.156

Note: N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consump-
tion per half-hour during the pre- or post-treatment period, as described in 3.2.

Table AT.6: DiD 1 (Signed Up Early versus Never) results: LATE of opt-in on consumption (kWh per half-hour)
during Saving Sessions.

Coef Std Err T-stat P > |T| 95% CI

Intercept 0.2503 0.0005 455.40 0.0000 0.2493 0.2514
Sign-up -0.0088 0.0003 -29.359 0.0000 -0.0094 -0.0082
Saving Session 0.1972 0.0017 118.70 0.0000 0.1940 0.2005
Average HDDs -0.1604 0.0047 -33.952 0.0000 -0.1697 -0.1512
Opt in (proportion) -0.1425 0.0006 -245.66 0.0000 -0.1436 -0.1414

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. The endogenous variable is the proportion of the 13 possible Sessions
the customer opted into.

Table AT.7: DiD 1 (Signed Up Early versus Never) results: ITT effect on consumption (kWh per half-hour) in the
hour just before Saving Sessions.

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2487 0.001 464.711 0.000 0.248 0.250
Sign-up -0.0088 0.000 -29.330 0.000 -0.009 -0.008
Just before 0.1350 0.001 94.705 0.000 0.132 0.138
(Just before) * Sign-up -0.0079 0.000 -22.192 0.000 -0.009 -0.007
Average HDDs -0.1452 0.005 -31.765 0.000 -0.154 -0.136

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per half-hour during the pre- or post-treatment period, as described in 3.2.
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Table AT.8: DiD 1 (Signed Up Early versus Never) results: LATE of opt-in on consumption (kWh per half-hour)
in the hour just before Saving Sessions.

Coef Std Err T-stat P > |T| 95% CI

Intercept 0.2487 0.0005 464.71 0.0000 0.2476 0.2497
Sign-up -0.0088 0.0003 -29.329 0.0000 -0.0093 -0.0082
Just before 0.1349 0.0014 94.644 0.0000 0.1321 0.1376
Average HDDs -0.1448 0.0046 -31.672 0.0000 -0.1538 -0.1359
Opt in (proportion) -0.0126 0.0006 -22.188 0.0000 -0.0137 -0.0115

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. The endogenous variable is the proportion of the 13 possible Sessions
the customer opted into.

Table AT.9: DiD 1 (Signed Up Early versus Never) results: ITT effect on consumption (kWh per half-hour) in the
hour just after Saving Sessions.

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2515 0.001 459.279 0.000 0.250 0.253
Just after 0.1856 0.002 116.181 0.000 0.182 0.189
Sign-up -0.0088 0.000 -29.378 0.000 -0.009 -0.008
(Just after) * Sign-up -0.0089 0.000 -23.447 0.000 -0.010 -0.008
Average HDDs -0.1712 0.005 -36.403 0.000 -0.180 -0.162

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per half-hour during the pre- or post-treatment period, as described in 3.2.

Table AT.10: DiD 1 (Signed Up Early versus Never) results: LATE of opt-in on consumption (kWh per half-hour)
in the hour just after Saving Sessions.

Coef Std Err T-stat P > |T| 95% CI

Intercept 0.2514 0.0005 459.33 0.0000 0.2504 0.2525
Sign-up -0.0088 0.0003 -29.378 0.0000 -0.0094 -0.0082
Just after 0.1854 0.0016 116.13 0.0000 0.1823 0.1885
Average HDDs -0.1707 0.0047 -36.303 0.0000 -0.1799 -0.1615
Opt in (proportion) -0.0142 0.0006 -23.450 0.0000 -0.0154 -0.0130

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. The endogenous variable is the proportion of the 13 possible Sessions
the customer opted into.
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Table AT.11: DiD 1 (Signed Up Early versus Never) results: ITT effect on daily consumption (kWh per day) on
days of Saving Sessions.

Coef Std Err z-value P > |z| [0.025 0.975]

Intercept 12.9356 0.900 14.369 0.000 11.171 14.700
Sign-up -0.2528 0.439 -0.576 0.565 -1.114 0.608
Saving Session 8.3624 1.674 4.995 0.000 5.081 11.644
(Saving Session) * Sign-up -0.3769 0.205 -1.835 0.067 -0.780 0.026
Average HDDs -1.1536 0.334 -3.458 0.001 -1.808 -0.500

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per day during the pre-treatment period (weekdays during October and the first half of November) or post-treatment period (the 13 days with
Saving Sessions).

Table AT.12: DiD 1 (Signed Up Early versus Never) results: LATE of opt-in on daily consumption (kWh per day)
on days of Saving Sessions.

Coef Std Err T-stat P > |T| 95% CI

Intercept 12.933 0.9006 14.360 0.0000 11.168 14.698
Sign-up -0.2528 0.4392 -0.5756 0.5649 -1.1137 0.6081
Saving Session 8.3556 1.6749 4.9887 0.0000 5.0728 11.638
Average HDDs -1.1523 0.3338 -3.4518 0.0006 -1.8066 -0.4980
Opt in (proportion) -0.5988 0.3263 -1.8348 0.0665 -1.2384 0.0408

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per day during the pre-treatment period (weekdays during October and the first half of November) or post-treatment period (the 13 days with
Saving Sessions). The endogenous variable is the proportion of the 13 possible Sessions the customer opted into.

AT.3 DiDRegressionOutput: ConditionalAverage Treatment Effects (CATEs for FirstDiD
Strategy)

Table AT.13: CATE for estimated annual electricity consumption (EAC) for DiD 1 (Signed Up Early versus
Never).

Coef Std Err z-value P > |z| 95% CI

Intercept 0.1562 0.000 324.803 0.000 0.155 0.157
Sign-up -0.0010 0.000 -4.010 0.000 -0.001 -0.001
High EAC 0.1582 0.000 527.004 0.000 0.158 0.159
Unknown EAC 0.1389 0.008 17.510 0.000 0.123 0.154
Sign-up * (High EAC) -0.0185 0.000 -38.763 0.000 -0.019 -0.018
Sign-up:Unknown EAC -0.0369 0.013 -2.933 0.003 -0.062 -0.012
Saving Session 0.1260 0.001 86.183 0.000 0.123 0.129
(Saving Session) * Sign-up -0.0609 0.000 -159.876 0.000 -0.062 -0.060
(Saving Session) * (High EAC) 0.0908 0.000 208.133 0.000 0.090 0.092
Saving Session:Unknown EAC 0.0863 0.008 11.152 0.000 0.071 0.101
(Saving Session) * Sign-up * (High EAC) -0.0533 0.001 -76.715 0.000 -0.055 -0.052
(Saving Session) * Sign-up * (Unknown EAC) -0.0512 0.012 -4.366 0.000 -0.074 -0.028
Average HDDs -0.1001 0.004 -24.035 0.000 -0.108 -0.092

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per half-hour during the pre- or post-treatment period, as described in 3.2. EAC has three levels: high if greater than or equal to 2,900 kWh per
year, low if less than 2,900 kWh per year, and unknown if unknown. In this regression, low EAC is the reference category.
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Table AT.14: CATE for smart tariff for DiD 1 (Signed Up Early versus Never).

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2484 0.001 451.863 0.000 0.247 0.249
Sign-up -0.0091 0.000 -30.160 0.000 -0.010 -0.008
Smart tariff 0.0606 0.001 42.481 0.000 0.058 0.063
Sign-up * (Smart tariff) -0.0356 0.002 -20.474 0.000 -0.039 -0.032
Saving Session 0.1957 0.002 117.813 0.000 0.192 0.199
(Saving Session) * Sign-up -0.0881 0.000 -232.557 0.000 -0.089 -0.087
Saving Session:Smart tariff 0.0522 0.002 28.406 0.000 0.049 0.056
(Saving Session) * Sign-up * (Smart tariff) -0.0514 0.002 -23.422 0.000 -0.056 -0.047
Average HDDs -0.1608 0.005 -34.041 0.000 -0.170 -0.152

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. Smart tariff has two levels: True, if the customer’s tariff on Nov. 15, 2022
was ’smart’, False if any other tariff. (Smart tariffs are special tariffs marketed to customers with low-carbon technologies like electric vehicles,
batteries, and heat pumps. Whether a customer is on a smart tariff is a proxy for their engagement with their home’s energy consumption and
likelihood of having low-carbon technologies like an EV, solar panels, and/or heat pump. In this regression, the reference category is not having
a smart tariff.

Table AT.15: CATE for index of multiple deprivation quintile for DiD 1 (Signed Up Early versus Never).

Coef Std Err z-value P > |z| [0.025 0.975]

Intercept 0.2439 0.001 374.365 0.000 0.243 0.245
Sign-up -0.0094 0.001 -14.009 0.000 -0.011 -0.008
Very low deprivation 0.0226 0.001 38.462 0.000 0.021 0.024
Low deprivation 0.0092 0.001 15.552 0.000 0.008 0.010
High deprivation -0.0140 0.001 -24.209 0.000 -0.015 -0.013
Very high deprivation -0.0203 0.001 -34.179 0.000 -0.021 -0.019
Unknown deprivation level -0.0236 0.004 -6.603 0.000 -0.031 -0.017
Sign-up * (Very low deprivation) -0.0067 0.001 -7.398 0.000 -0.008 -0.005
Sign-up * (Low deprivation) -0.0017 0.001 -1.794 0.073 -0.003 0.000
Sign-up * (High deprivation) 0.0025 0.001 2.644 0.008 0.001 0.004
Sign-up * (Very high deprivation) 0.0024 0.001 2.365 0.018 0.000 0.004
Sign-up * (Unknown deprivation level) 0.0096 0.006 1.594 0.111 -0.002 0.021
Saving Session 0.1887 0.002 108.031 0.000 0.185 0.192
(Saving Session) * Sign-up -0.0910 0.001 -103.649 0.000 -0.093 -0.089
Saving Session * (Very low deprivation) 0.0111 0.001 15.074 0.000 0.010 0.013
Saving Session * (Low deprivation) 0.0049 0.001 6.506 0.000 0.003 0.006
Saving Session * (High deprivation) -0.0192 0.001 -25.433 0.000 -0.021 -0.018
Saving Session * (Very high deprivation) -0.0376 0.001 -50.086 0.000 -0.039 -0.036
Saving Session * (Unknown deprivation level) -0.0493 0.004 -13.065 0.000 -0.057 -0.042
(Saving Session) * Sign-up * (Very low deprivation) -0.0149 0.001 -13.029 0.000 -0.017 -0.013
(Saving Session) * Sign-up * (Low deprivation) -0.0070 0.001 -5.856 0.000 -0.009 -0.005
(Saving Session) * Sign-up * (High deprivation) 0.0127 0.001 10.375 0.000 0.010 0.015
(Saving Session) * Sign-up * (Very high deprivation) 0.0266 0.001 21.038 0.000 0.024 0.029
(Saving Session) * Sign-up * (Unknown deprivation level) 0.0383 0.007 5.337 0.000 0.024 0.052
Average HDDs -0.1209 0.005 -25.488 0.000 -0.130 -0.112

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per half-hour during the pre- or post-treatment period, as described in 3.2. Index of multiple deprivation (IMD) is a measure of relative depri-
vation for each postcode of the UK. We show IMD quintiles: a postcode can be classified as having “very low” deprivation, “low” deprivation,
“medium” deprivation, “high” deprivation, or “very high” deprivation. Customer postcode IMD is “unknown” for new postcodes that do not
yet have an IMD – these are fewer than 1% of Octopus Energy customers. Thus, IMD has six levels: very low, low, medium, high, very high,
and unknown. In this regression, medium (40-60 percentile) IMD is the reference category.
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Table AT.16: CATE for EPC letter grade for DiD 1 (Signed Up Early versus Never).

Coef Std Err z-value P > |z| [0.025 0.975]

Intercept 0.2478 0.001 408.030 0.000 0.247 0.249
Sign-up -0.0099 0.001 -18.240 0.000 -0.011 -0.009
EPC: A -0.0072 0.005 -1.585 0.113 -0.016 0.002
EPC: B -0.0183 0.001 -29.222 0.000 -0.020 -0.017
EPC: C -0.0118 0.001 -22.565 0.000 -0.013 -0.011
EPC: E 0.0226 0.001 29.843 0.000 0.021 0.024
EPC: F 0.0623 0.002 28.639 0.000 0.058 0.067
EPC: G 0.0585 0.005 11.866 0.000 0.049 0.068
EPC: Unknown 0.0135 0.000 27.830 0.000 0.013 0.014
Sign-up * (EPC: A) 0.0046 0.007 0.630 0.529 -0.010 0.019
Sign-up * (EPC: B) 0.0049 0.001 4.613 0.000 0.003 0.007
Sign-up * (EPC: C) 0.0036 0.001 4.180 0.000 0.002 0.005
Sign-up * (EPC: E) -0.0040 0.001 -3.390 0.001 -0.006 -0.002
Sign-up * (EPC: F) -0.0170 0.003 -5.280 0.000 -0.023 -0.011
Sign-up * (EPC: G) -0.0079 0.008 -0.980 0.327 -0.024 0.008
Sign-up * (EPC: Unknown) 7.108e-05 0.001 0.093 0.926 -0.001 0.002
Saving Session 0.1995 0.002 116.836 0.000 0.196 0.203
(Saving Session) * Sign-up -0.0857 0.001 -124.158 0.000 -0.087 -0.084
(Saving Session) * (EPC: A) 0.0983 0.008 12.673 0.000 0.083 0.114
(Saving Session) * (EPC: B) -0.0238 0.001 -29.995 0.000 -0.025 -0.022
(Saving Session) * (EPC: C) -0.0126 0.001 -19.118 0.000 -0.014 -0.011
(Saving Session) * (EPC: E) 0.0265 0.001 26.524 0.000 0.025 0.028
(Saving Session) * (EPC: F) 0.0731 0.003 24.891 0.000 0.067 0.079
(Saving Session) * (EPC: G) 0.0951 0.007 13.192 0.000 0.081 0.109
(Saving Session) * (EPC: Unknown) -0.0016 0.001 -2.666 0.008 -0.003 -0.000
(Saving Session) * Sign-up * (EPC: A) -0.0395 0.011 -3.516 0.000 -0.061 -0.017
(Saving Session) * Sign-up * (EPC: B) 0.0195 0.001 14.979 0.000 0.017 0.022
(Saving Session) * Sign-up * (EPC: C) 0.0109 0.001 10.226 0.000 0.009 0.013
(Saving Session) * Sign-up * (EPC: E) -0.0133 0.002 -8.559 0.000 -0.016 -0.010
(Saving Session) * Sign-up * (EPC: F) -0.0425 0.004 -9.731 0.000 -0.051 -0.034
(Saving Session) * Sign-up * (EPC: G) -0.0352 0.011 -3.105 0.002 -0.057 -0.013
(Saving Session) * Sign-up * (EPC: Unknown) -0.0200 0.001 -21.246 0.000 -0.022 -0.018
Average HDDs -0.1633 0.005 -34.550 0.000 -0.173 -0.154

N=1,972,514 unique observations (986,257 customers, each with one pre and post observation). The outcome variable is kWh consumption
per half-hour during the pre- or post-treatment period, as described in 3.2. In the UK, properties receive Energy Performance Certificate (EPC)
letter ratings from A (most efficient) to G (least efficient). They are valid for 10 years. EPCs are needed whenever a property is built, sold, or
rented. This means that properties without EPCs are more likely to be owner-occupied (rather than rented) properties that have not been sold
in the previous 10 years. EPC thus has seven levels: A through G, and unknown. In this regression, EPC rating “D” is the reference category.
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AT.4 DiD Regression Outputs: ITT and LATE Results for Second DiD Strategy

Table AT.17: DiD 2 (Signed Up Early versus Late) results: ITT effect on consumption (kWh per half-hour)
during Saving Sessions.

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2383 0.002 152.681 0.000 0.235 0.241
Signed up early -0.0058 0.001 -4.198 0.000 -0.008 -0.003
Saving Session 0.1712 0.003 52.876 0.000 0.165 0.178
Saving Session) * (Signed up early) -0.0972 0.002 -51.821 0.000 -0.101 -0.094
Average HDDs -0.0759 0.007 -10.950 0.000 -0.089 -0.062

N=688,860 unique observations (344,430 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. As we show in Figure AF.13, we compare 331,992 Octopus Energy
customers who signed up before the first Saving Session to 12,438 Octopus customers who signed up on or after February 1, 2023. We use this
specification as our main Signed Up Early versus Late DiD.

Table AT.18: DiD 2 (Signed Up Early versus Late) robustness check: where “late” joiners are defined by joining
after the 10th Session.

Coef Std Err z-value P > |z| 95% CI

Intercept 0.2394 0.002 121.839 0.000 0.236 0.243
Signed up early -0.0069 0.002 -3.805 0.000 -0.010 -0.003
Saving Session 0.1724 0.004 47.590 0.000 0.165 0.179
Saving Session) * (Signed up early) -0.0988 0.002 -40.233 0.000 -0.104 -0.094
Average HDDs -0.0749 0.007 -10.746 0.000 -0.089 -0.061

N=678,784 unique observations (339,392 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. In this robustness check, the control group of “late” sign-ups is defined
by joining on or after February 14, 2023. This date is after the 10th Saving Session on February 13, 2023. This is in contrast to the main Signed
Up Early versus Late DiD specification, which defines “late” sign-ups as joining on or after February 1, 2023, after the ninth Session on January
30, 2023. This decreases the size of the “late” group from 12,438 to 7,400, as 5,038 customers joined on or between February 1 and 13, 2023.

Table AT.19: DiD 2 (Signed Up Early versus Late) results: LATE of opt-in on consumption (kWh per half-hour)
during Saving Sessions.

Coef Std Err T-stat P > |T| 95% CI

Intercept 0.2367 0.0015 152.80 0.0000 0.2336 0.2397
Signed up early -0.0058 0.0014 -4.1859 0.0000 -0.0085 -0.0031
Saving Session 0.1652 0.0032 52.408 0.0000 0.1590 0.1714
Average HDDs -0.0601 0.0069 -8.7543 0.0000 -0.0736 -0.0467
Opt in (proportion) -0.1483 0.0029 -51.887 0.0000 -0.1539 -0.1427

N=688,860 unique observations (344,430 customers, each with one pre and post observation). The outcome variable is kWh consumption per
half-hour during the pre- or post-treatment period, as described in 3.2. The endogenous variable is the proportion of the 13 possible Sessions
the customer opted into.
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Table AT.20: DiD 2 (Signed Up Early versus Late) results: LATE of opt-in on consumption during Saving
Sessions where “late” joiners are defined by joining after the 10th Session.

Coef Std Err T-stat P > |T| 95% CI

Intercept 0.2376 0.0020 121.86 0.0000 0.2338 0.2414
Signed up early -0.0069 0.0018 -3.7964 0.0001 -0.0105 -0.0033
Saving Session 0.1662 0.0035 47.473 0.0000 0.1594 0.1731
Average HDDs -0.0587 0.0069 -8.4891 0.0000 -0.0722 -0.0451
Opt in (proportion) -0.1507 0.0037 -40.266 0.0000 -0.1580 -0.1433

N=678,784 unique observations (339,392 customers, each with one pre and post observation). In this robustness check, as in Table AT.18, the
control group of “late” sign-ups is defined by joining on or after February 14, 2023. This date is after the 10th Saving Session on February 13,
2023. This is in contrast to the main Signed Up Early versus Late DiD specification, which defines “late” sign-ups as joining on or after February
1, 2023, after the ninth Session on January 30, 2023. This decreases the size of the “late” group from 12,438 to 7,400, as 5,038 customers joined
on or between February 1 and 13, 2023. The outcome variable is kWh consumption per half-hour during the pre- or post-treatment period, as
described in 3.2. The endogenous variable is the proportion of the 13 possible Sessions the customer opted into.
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AT.5 Regression Outputs: Models of Session Participation

Table AT.21: Logistic regression predicting sign-up.

Coef Std Err z-value P > |z| [0.025 0.975]

Constant -0.4729 0.009 -54.370 0.000 -0.490 -0.456
Age band: 18-24 -0.0682 0.008 -9.078 0.000 -0.083 -0.053
Age band: 25-34 -0.0658 0.007 -9.885 0.000 -0.079 -0.053
Age band: 45-54 0.0836 0.005 16.834 0.000 0.074 0.093
Age band: 55-64 0.1045 0.006 16.334 0.000 0.092 0.117
Age band: 65-74 0.0802 0.008 10.068 0.000 0.065 0.096
Age band: 75+ -0.0552 0.009 -5.957 0.000 -0.073 -0.037
Age band: Unknown -0.1369 nan nan nan nan nan
Floor area: low -0.0781 0.006 -12.441 0.000 -0.090 -0.066
Floor area: high 0.1071 0.006 19.455 0.000 0.096 0.118
Floor area: Unknown 0.2425 0.030 8.102 0.000 0.184 0.301
IMD quintile: Very low 0.1005 0.006 18.159 0.000 0.090 0.111
IMD quintile: Low 0.0483 0.006 8.599 0.000 0.037 0.059
IMD quintile: High -0.0598 0.007 -8.895 0.000 -0.073 -0.047
IMD quintile: Very high -0.1917 0.006 -33.298 0.000 -0.203 -0.180
IMD quintile: Unknown -0.0087 0.045 -0.192 0.848 -0.097 0.080
EAC: high -0.0601 0.004 -15.828 0.000 -0.068 -0.053
EAC: Unknown -0.2727 0.096 -2.831 0.005 -0.461 -0.084
Occupancy type: Multi-occupied household -0.2434 0.013 -18.056 0.000 -0.270 -0.217
Occupancy type: Single adult household -0.1425 nan nan nan nan nan
Occupancy type: Unknown -0.1369 nan nan nan nan nan
Rural Urban Classication: rural 0.0527 0.005 11.460 0.000 0.044 0.062
Rural Urban Classication: Unknown 0.0592 0.050 1.189 0.235 -0.038 0.157
On smart tariff 0.9976 0.008 128.186 0.000 0.982 1.013
EPC: A 0.2126 0.033 6.497 0.000 0.148 0.277
EPC: B -0.0553 0.007 -7.769 0.000 -0.069 -0.041
EPC: C -0.0016 0.006 -0.281 0.779 -0.013 0.010
EPC: E -0.0118 0.004 -3.163 0.002 -0.019 -0.004
EPC: F 0.0259 0.015 1.765 0.078 -0.003 0.055
EPC: G -0.0244 0.032 -0.752 0.452 -0.088 0.039
EPC: Unknown 0.1427 0.009 15.643 0.000 0.125 0.161
DNO: B 0.0682 0.006 11.095 0.000 0.056 0.080
DNO: C -0.1683 0.009 -18.558 0.000 -0.186 -0.151
DNO: D 0.0501 0.009 5.397 0.000 0.032 0.068
DNO: E 0.0330 0.007 4.446 0.000 0.018 0.048
DNO: F 0.0588 0.008 6.996 0.000 0.042 0.075
DNO: G 0.0159 0.008 1.990 0.047 0.000 0.031
DNO: H 0.1086 0.007 16.147 0.000 0.095 0.122
DNO: J 0.0195 0.008 2.418 0.016 0.004 0.035
DNO: K 0.0728 0.011 6.565 0.000 0.051 0.095
DNO: L 0.1395 0.009 15.522 0.000 0.122 0.157
DNO: M 0.1118 0.007 15.071 0.000 0.097 0.126
DNO: N 0.0222 0.009 2.410 0.016 0.004 0.040
DNO: P 0.0243 0.017 1.391 0.164 -0.010 0.059
DNO: Unknown -1.5111 0.017 -89.565 0.000 -1.544 -1.478

Note: N=1,384,400 customers invited by Octopus Energy to sign up for Saving Sessions. The outcome variable is whether the customer signed
up at any point before or during the Saving Sessions season, which ended on the last Saving Session Mar. 23, 2023. Reference categories are:
Age band: 35-44, IMD quintile: Medium, Floor area: medium, EAC: low, Occupancy type: Couple, Rural Urban Classification: urban, Not on
a smart tariff; EPC: D, and DNO region: A.
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Table AT.22: Poisson regression predicting number of opt-ins per customer.

Coef Std Err z-value P > |z| [0.025 0.975]

Constant 0.9236 0.003 301.463 0.000 0.918 0.930
Age band: 18-24 -0.0640 0.003 -24.088 0.000 -0.069 -0.059
Age band: 25-34 -0.0874 0.002 -35.271 0.000 -0.092 -0.083
Age band: 45-54 0.0612 0.002 29.494 0.000 0.057 0.065
Age band: 55-64 0.0795 0.002 36.539 0.000 0.075 0.084
Age band: 65-74 0.0729 0.002 29.775 0.000 0.068 0.078
Age band: 75+ -0.0328 0.003 -10.836 0.000 -0.039 -0.027
Age band: Unknown -0.1368 0.003 -45.222 0.000 -0.143 -0.131
Floor area: low -0.0705 0.002 -28.826 0.000 -0.075 -0.066
Floor area: high 0.0992 0.002 54.474 0.000 0.096 0.103
Floor area: Unknown 0.1962 0.010 20.128 0.000 0.177 0.215
IMD quintile: Very low 0.0759 0.002 40.700 0.000 0.072 0.080
IMD quintile: Low 0.0406 0.002 21.232 0.000 0.037 0.044
IMD quintile: High -0.0610 0.002 -27.990 0.000 -0.065 -0.057
IMD quintile: Very high -0.1818 0.003 -71.842 0.000 -0.187 -0.177
IMD quintile: Unknown 0.0002 0.016 0.012 0.991 -0.032 0.032
EAC: high -0.0766 0.001 -57.530 0.000 -0.079 -0.074
EAC: Unknown -0.0632 0.032 -1.947 0.051 -0.127 0.000
Occupancy type: Multi-occupied household -0.2554 0.005 -46.609 0.000 -0.266 -0.245
Occupancy type: Single adult household -0.1324 0.002 -68.813 0.000 -0.136 -0.129
Occupancy type: Unknown -0.1368 0.003 -45.222 0.000 -0.143 -0.131
Rural Urban Classication: rural 0.0559 0.002 36.167 0.000 0.053 0.059
Rural Urban Classication: Unknown 0.0958 0.018 5.447 0.000 0.061 0.130
On smart tariff 0.6289 0.002 314.493 0.000 0.625 0.633
EPC: A 0.1957 0.010 20.051 0.000 0.177 0.215
EPC: B -0.0291 0.002 -12.141 0.000 -0.034 -0.024
EPC: C -0.0040 0.002 -2.140 0.032 -0.008 -0.000
EPC: E -0.0146 0.002 -6.106 0.000 -0.019 -0.010
EPC: F 0.0164 0.005 3.314 0.001 0.007 0.026
EPC: G -0.0551 0.012 -4.768 0.000 -0.078 -0.032
EPC: Unknown 0.1467 0.002 70.684 0.000 0.143 0.151
DNO: B 0.0442 0.003 16.914 0.000 0.039 0.049
DNO: C -0.1781 0.004 -46.380 0.000 -0.186 -0.171
DNO: D 0.0359 0.003 10.655 0.000 0.029 0.042
DNO: E 0.0279 0.003 10.325 0.000 0.023 0.033
DNO: F 0.0545 0.003 17.914 0.000 0.049 0.060
DNO: G 0.0073 0.003 2.564 0.010 0.002 0.013
DNO: H 0.0722 0.003 28.215 0.000 0.067 0.077
DNO: J 0.0092 0.003 3.263 0.001 0.004 0.015
DNO: K 0.0335 0.004 8.669 0.000 0.026 0.041
DNO: L 0.1179 0.003 38.417 0.000 0.112 0.124
DNO: M 0.0987 0.003 34.713 0.000 0.093 0.104
DNO: N 0.0064 0.003 1.940 0.052 −6.64× 10−5 0.013
DNO: P 0.0362 0.006 6.179 0.000 0.025 0.048
DNO: Unknown -1.4090 0.008 -186.872 0.000 -1.424 -1.394

Note: N=969,080 (this is 70% of the 1,384,400 customers who received an email to sign up to Saving Sessions; 30% were held back to check
model accuracy). The outcome variable is how many events the customer opted into (of a possible 13). Reference categories are: Age band:
35-44, IMD quintile: Medium, Floor area: medium, EAC: low, Occupancy type: Couple, Rural Urban Classification: urban, Not on a smart
tariff; EPC: D, and DNO region: A.
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Table AT.23: Logistic regression predicting opt-in.

Coef Std Err z-value P > |z| [0.025 0.975]

Constant 0.4173 0.009 46.564 0.000 0.400 0.435
Age band: 18-24 -0.0541 0.008 -6.993 0.000 -0.069 -0.039
Age band: 25-34 -0.0520 0.007 -7.237 0.000 -0.066 -0.038
Age band: 45-54 0.0231 0.006 3.779 0.000 0.011 0.035
Age band: 55-64 0.0537 0.006 8.417 0.000 0.041 0.066
Age band: 65-74 0.0628 0.007 8.815 0.000 0.049 0.077
Age band: 75+ 0.0057 0.009 0.650 0.516 -0.012 0.023
Age band: Unknown -0.0681 0.034 -1.983 0.047 -0.135 -0.001
Floor area: low 0.0005 0.007 0.065 0.948 -0.013 0.014
Floor area: high 0.0662 0.005 12.367 0.000 0.056 0.077
Floor area: Unknown 0.1422 0.029 4.902 0.000 0.085 0.199
IMD quintile: Very low 0.0419 0.005 7.676 0.000 0.031 0.053
IMD quintile: Low 0.0243 0.006 4.347 0.000 0.013 0.035
IMD quintile: High -0.0457 0.006 -7.261 0.000 -0.058 -0.033
IMD quintile: Very high -0.1190 0.007 -16.505 0.000 -0.133 -0.105
IMD quintile: Unknown 0.0024 0.049 0.049 0.961 -0.094 0.099
EAC: high -0.1034 0.004 -26.743 0.000 -0.111 -0.096
EAC: Unknown 0.0851 0.110 0.776 0.438 -0.130 0.300
Occupancy type: Multi-occupied household -0.1469 0.015 -9.728 0.000 -0.177 -0.117
Occupancy type: Single adult household -0.0762 0.005 -13.867 0.000 -0.087 -0.065
Occupancy type: Unknown -0.0681 0.033 -2.077 0.038 -0.132 -0.004
Rural Urban Classication: rural 0.0557 0.005 12.214 0.000 0.047 0.065
Rural Urban Classication: Unknown 0.0725 0.053 1.374 0.170 -0.031 0.176
On smart tariff 0.3800 0.006 59.253 0.000 0.367 0.393
EPC: A 0.2481 0.031 7.912 0.000 0.187 0.310
EPC: B 0.0049 0.007 0.691 0.489 -0.009 0.019
EPC: C 0.0164 0.006 2.971 0.003 0.006 0.027
EPC: E -0.0281 0.007 -4.068 0.000 -0.042 -0.015
EPC: F -0.0028 0.014 -0.197 0.844 -0.031 0.025
EPC: G -0.0568 0.033 -1.716 0.086 -0.122 0.008
EPC: Unknown 0.0472 0.005 8.866 0.000 0.037 0.058
DNO: B 0.0175 0.008 2.284 0.022 0.002 0.033
DNO: C -0.1266 0.011 -11.744 0.000 -0.148 -0.105
DNO: D -0.0095 0.010 -0.980 0.327 -0.029 0.010
DNO: E -0.0019 0.008 -0.245 0.807 -0.017 0.013
DNO: F 0.0257 0.009 2.886 0.004 0.008 0.043
DNO: G -0.0200 0.008 -2.420 0.016 -0.036 -0.004
DNO: H 0.0190 0.007 2.545 0.011 0.004 0.034
DNO: J -0.0208 0.008 -2.547 0.011 -0.037 -0.005
DNO: K -0.0437 0.011 -3.916 0.000 -0.066 -0.022
DNO: L 0.0769 0.009 8.515 0.000 0.059 0.095
DNO: M 0.0489 0.008 5.866 0.000 0.033 0.065
DNO: N -0.0355 0.010 -3.661 0.000 -0.055 -0.016
DNO: P 0.0681 0.018 3.850 0.000 0.033 0.103
DNO: Unknown 0.0480 0.021 2.309 0.021 0.007 0.089

Note: N=6,057,082 customer * event combinations. We use 543,235 customers who signed up before the final Saving Session, each of whom has
between one and 13 observations – potential Sessions they chose whether or not to opt into – depending on when during the Saving Sessions
season they signed up. The outcome variable is whether the customer opted into the event. Reference categories are: Age band: 35-44, IMD
quintile: Medium, Floor area: medium, EAC: low, Occupancy type: Couple, Rural Urban Classification: urban, Not on a smart tariff; EPC: D,
and DNO region: A.
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Table AT.24: Logistic regression predicting customer opt-in for the 8th Saving Session on Jan. 24, 2023.

Coef Std Err z-value P > |z| [0.025 0.975]

Constant -0.8211 0.018 -46.084 0.000 -0.856 -0.786
Age band: 18-24 0.0033 0.015 0.224 0.823 -0.026 0.032
Age band: 25-34 -0.0436 0.013 -3.301 0.001 -0.070 -0.018
Age band: 45-54 0.0247 0.012 2.128 0.033 0.002 0.047
Age band: 55-64 0.0981 0.013 7.625 0.000 0.073 0.123
Age band: 65-74 0.1598 0.014 11.083 0.000 0.132 0.188
Age band: 75+ 0.1172 0.017 6.919 0.000 0.084 0.150
Age band: Unknown -0.0589 0.109 -0.541 0.589 -0.273 0.155
Floor area: low 0.0136 0.013 1.043 0.297 -0.012 0.039
Floor area: high 0.0987 0.010 9.836 0.000 0.079 0.118
Floor area: Unknown 0.1955 0.056 3.501 0.000 0.086 0.305
IMD quintile: Very low 0.0698 0.011 6.610 0.000 0.049 0.091
IMD quintile: Low 0.0294 0.011 2.730 0.006 0.008 0.051
IMD quintile: High -0.0485 0.012 -4.076 0.000 -0.072 -0.025
IMD quintile: Very high -0.1200 0.013 -8.955 0.000 -0.146 -0.094
IMD quintile: Unknown -0.0668 0.088 -0.755 0.450 -0.240 0.107
EAC: high -0.0815 0.007 -10.998 0.000 -0.096 -0.067
EAC: Unknown -0.0059 0.191 -0.031 0.975 -0.381 0.369
Occupancy type: Multi-occupied household -0.1415 0.028 -5.075 0.000 -0.196 -0.087
Occupancy type: Single adult household -0.0803 0.010 -7.683 0.000 -0.101 -0.060
Occupancy type: Unknown -0.0589 0.097 -0.606 0.544 -0.250 0.132
Rural Urban Classication: rural 0.0624 0.009 7.045 0.000 0.045 0.080
Rural Urban Classication: Unknown 0.1713 0.095 1.798 0.072 -0.015 0.358
On smart tariff 0.3336 0.012 26.699 0.000 0.309 0.358
EPC: A 0.1793 0.060 2.973 0.003 0.061 0.297
EPC: B 0.0070 0.013 0.531 0.595 -0.019 0.033
EPC: C 0.0178 0.010 1.721 0.085 -0.002 0.038
EPC: E -0.0185 0.013 -1.404 0.160 -0.044 0.007
EPC: F -0.0254 0.028 -0.918 0.358 -0.080 0.029
EPC: G -0.0115 0.064 -0.180 0.857 -0.137 0.114
EPC: Unknown 0.0771 0.010 7.413 0.000 0.057 0.097
DNO: B -0.0115 0.015 -0.787 0.431 -0.040 0.017
DNO: C -0.0427 0.020 -2.090 0.037 -0.083 -0.003
DNO: D 0.0014 0.019 0.073 0.942 -0.036 0.038
DNO: E -0.0199 0.015 -1.320 0.187 -0.049 0.010
DNO: F -0.0437 0.017 -2.569 0.010 -0.077 -0.010
DNO: G -0.0352 0.016 -2.229 0.026 -0.066 -0.004
DNO: H 0.0595 0.014 4.108 0.000 0.031 0.088
DNO: J 0.0086 0.016 0.546 0.585 -0.022 0.039
DNO: K 0.0171 0.020 0.854 0.393 -0.022 0.056
DNO: L 0.0186 0.018 1.025 0.305 -0.017 0.054
DNO: M 0.0376 0.019 2.013 0.044 0.001 0.074
DNO: N 0.0104 0.017 0.605 0.545 -0.024 0.044
DNO: P -0.0266 0.015 -1.762 0.078 -0.056 0.003
DNO: Unknown 0.0002 0.025 0.009 0.993 -0.049 0.050
is opted into 23jan event 2.2606 0.007 318.654 0.000 2.247 2.274

Note: N=507,493 customers signed up by the 7th Saving Session on Jan. 23, 2023. The outcome variable is whether the customer opted into the
Saving Session on Jan. 24, 2023. Reference categories are: Age band: 35-44, IMD quintile: Medium, Floor area: medium, EAC: low, Occupancy
type: Couple, Rural Urban Classification: urban, Not on a smart tariff; EPC: D, and DNO region: A.
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AT.6 RDD and Field Trial: Descriptive Statistics

Table AT.25: Global descriptive statistics for correlates used for the regression discontinuity and field trial.

NMissing Binary NTrue Mean Std. Deviation
Total Metered Consumption (kWh) 3,378 No — 0.618 2.704
Opted Into Session [Ref Not Opted In] 0 No — 0.570 0.495
Intraday Opt-in Notice [Ref Day-ahead Notice] 0 Yes 209,312 — —
Intraday Opt-in Notice (07:59:59, 09:00:00] [Ref Day-ahead Notice] 0 Yes 14,672 — —
Intraday Opt-in Notice (09:00:00, 10:00:00] [Ref Day-ahead Notice] 0 Yes 15,632 — —
Intraday Opt-in Notice (10:00:00, 11:00:00] [Ref Day-ahead Notice] 0 Yes 32,189 — —
Intraday Opt-in Notice (11:00:00, 12:00:00] [Ref Day-ahead Notice] 0 Yes 173,279 — —
Intraday Opt-in Notice (12:00:00, 13:00:00] [Ref Day-ahead Notice] 0 Yes 164,447 — —
Account ID 0 No — 2991160.533 1500449.293
Avg. Historical in-Session Consumption (kWh) 952 No — 0.700 8.068
Avg. Historical Session Participation 894 No — 0.527 0.332
Total P376 (Unadjusted) Baseline Consumption (kWh) 0 No — 0.788 6.904
Estimated Annual Consumption (kWh) 63,097 No — 3671.738 4798.974
Index of Multiple Deprivation (IMD) Rank (Postcode) 80,001 No — 17821.793 9893.760
Tenure with Octopus (Years Prior to 1st SS10 Opt-in Notice) 62,084 No — 2.312 1.189
Business Entity [Ref Non-Business Entity] 0 Yes 561 — —
Has Non-Octopus Product [Ref Octopus Product] 0 Yes 10,404 — —
Has Smart Tariff [Ref Non-Smart Tariff] 0 Yes 41,609 — —
DNO Region : North [Ref Midlands & South] 0 Yes 150,552 — —
DNO Region : Scotland [Ref Midlands & South] 0 Yes 34,439 — —

(a) Regression Discontinuity Design (N = 609,531).
NMissing Binary NTrue Mean Std. Deviation

Total Metered Consumption (kWh) 12,567 No — 0.654 0.784
Opted Into Session [Ref Not Opted In] 0 No — 0.445 0.497
Intraday Notice + Day-ahead Email [Ref Intraday Only] 0 Yes 19,182 — —
Intraday Notice + Intraday SMS + £1.25 Incentive [Ref Intraday Only] 0 Yes 4,472 — —
Intraday Notice + Intraday SMS + £1.25 Incentive Assigned 0 Yes 19,220 — —
Avg. Historical in-Session Consumption (kWh) 8,678 No — 0.667 3.825
Avg. Historical Session Participation 8,569 No — 0.527 0.330
Total P376 (Unadjusted) Baseline Consumption (kWh) 0 No — 0.763 2.178
Estimated Annual Consumption (kWh) 73,607 No — 3660.404 4691.735
Index of Multiple Deprivation (IMD) Rank (Postcode) 91,651 No — 17756.542 9893.062
Business Entity [Ref Non-Business Entity] 0 Yes 592 — —
Has Non-Octopus Product [Ref Octopus Product] 0 Yes 30,925 — —
Has Smart Tariff [Ref Non-Smart Tariff] 0 Yes 41,098 — —
DNO Region : North [Ref Midlands & South] 0 Yes 157,854 — —
DNO Region : Scotland [Ref Midlands & South] 0 Yes 37,231 — —

(b) Randomized Field Trial (N = 650,809).

Note: We use the binary indicator Opted Into Session as the response variable for our linear probability models and here we report its the
standard deviation as σp =

√
µp × (1− µp). We incorporate continuous variables into our models for our regression discontinuity design

and our field trial by first constructing Z-scores using our full dataset and then filtering our data based on missing values and, in the case
of our RDD, a bandwidth h. Z-scores were constructed by subtracting the global mean in the sample and dividing by the global standard
deviation. For our regression discontinuity, we construct Account ID relative to the cutoff for treatment which we then re-scale to millions prior
to model fitting. Moreover, we use three measures of historical energy usage — i.e., Total P376 (Unadjusted) Baseline (kWh), Estimated Annual
Consumption (kWh), and Average Historical in-Session Consumption (kWh). The first measure is an unweighted average of consumption during
the same half-hour of the day during the ten most-recent working days as governed by the the P376 amendment to Great Britain’s electricity
balancing and settlement code. The second measure is Octopus Energy’s predicted customer consumption based on meter readings over the
past year. The third measure is a customer’s average consumption across all Saving Sessions, regardless of Session opt-in but after DFS sign-up,
prior to February 13, 2023 (regression discontinuity design) or March 15, 2023 (field trial). We also use a measure of the average (i.e., the
proportion) of Saving Sessions that a customer opted into after DFS sign-up prior to February 13, 2023 (regression discontinuity design) or
March 15, 2023 (field trial). For the deprivation index, more deprived areas have lower postcode ranks.
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AT.7 RDD Regression Output: Complete Results

Table AT.26: Models of total consumption (kWh) during the 10th Saving Session (regression discontinuity
design).

MSE-Optimal Bandwidth (hLeft, hRight) (hL, hR) (hL, hR) (hL×1.5, hR×1.5) (hL×2, hR×2) hL Only

β̂ Intercept 0.566 (0.024) 0.588 (0.020) 0.609 (0.012) 0.628 (0.009) 0.613 (0.006)

β̂ Intraday Opt-in Notice 0.060 (0.025) 0.042 (0.021) 0.028 (0.012) 0.003 (0.010) —
β̂ Intraday Opt-in Notice (07:59:59, 09:00:00] — — — — 0.009 (0.008)
β̂ Intraday Opt-in Notice (09:00:00, 10:00:00] — — — — 0.012 (0.008)
β̂ Intraday Opt-in Notice (10:00:00, 11:00:00] — — — — 0.026 (0.007)
β̂ Intraday Opt-in Notice (11:00:00, 12:00:00] — — — — 0.037 (0.007)
β̂ Intraday Opt-in Notice (12:00:00, 13:00:00] — — — — 0.056 (0.008)

β̂ Account ID (Millions) [Relative to Cutoff] -0.201 (0.138) -0.247 (0.117) -0.149 (0.057) -0.067 (0.040) —
β̂ Intraday Opt-in Notice × Account ID 0.210 (0.139) 0.252 (0.114) 0.119 (0.050) 0.041 (0.031) —

β̂ Avg. Hist. Sess. Consumption (kWh) [Z-Score] — 2.804 (0.125) 2.752 (0.094) 3.991 (0.103) 3.988 (0.075)
β̂ Avg. Hist. Sess. Participation [Z-Score] — -0.023 (0.003) -0.025 (0.002) -0.006 (0.002) -0.004 (0.002)
β̂ Total P376 Baseline (kWh) [Z-Score] — 2.305 (0.113) 2.382 (0.085) 4.578 (0.073) 4.541 (0.071)
β̂ Est. Annual Consumption (kWh) [Z-Score] — 0.059 (0.010) 0.067 (0.010) -0.233 (0.012) -0.219 (0.010)
β̂ IMD Rank (Postcode) [Z-Score] — -0.007 (0.003) -0.005 (0.002) -0.014 (0.002) -0.015 (0.001)
β̂ Tenure with Octopus (Years) [Z-Score] — -0.047 (0.039) -0.061 (0.030) -0.065 (0.025) 0.030 (0.005)

β̂ Business Entity [Ref Non-Business] — 0.455 (0.274) 0.237 (0.185) 0.078 (0.155) -0.365 (0.090)
β̂ Has Non-Octopus Product [Ref Octo. Prod.] — -0.091 (0.034) -0.079 (0.032) -0.083 (0.035) -0.055 (0.018)
β̂ Has Smart Tariff [Ref Non-Smart Tariff] — -0.064 (0.010) -0.072 (0.009) 0.008 (0.009) 0.010 (0.006)
β̂ DNO Region : North [Ref Midlands & South] — 0.013 (0.005) 0.016 (0.004) 0.030 (0.004) 0.029 (0.002)
β̂ DNO Region : Scotland [Ref Midlands & South] — 0.015 (0.010) 0.012 (0.008) 0.015 (0.007) 0.008 (0.005)

Pre-treatment Covariates? No Yes Yes Yes Yes
Observations 78,724 69,168 116,973 160,169 350,361
Estimator OLS OLS OLS OLS OLS
Heteroscedasticity-Consistent Std. Errors (HC0) True True True True True
R2

Adj. 0.000 0.309 0.308 0.981 0.961

Note: The table presents parameter estimates and standard errors (parentheses) for the LATE (β̂ Intraday Opt-in Notice [Ref Day-ahead
Notice]), the expected average outcome in the control group (β̂ Intercept), and partial correlations for pre-treatment covariates from models
fit to subsets of our Saving Session data using asymmetric bandwidths hLeft and hRight optimised to reduce mean-squared error (MSE) (see
Section AI.8.2). Hour-specific CATEs (β̂ Intraday Opt-in Notice (Time Range]) are from a model fit to a subset of our data obtained using
only the left MSE-optimal bandwidth. Results rounded to three decimal places. See Long and Ervin (2000) for a discussion and comparison
heteroscedasticity-consistent covariance matrices. See Table AT.25 for descriptive statistics and reference categories.
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Table AT.27: Models of the probability of opting into the 10th Saving Session (regression discontinuity design).

MSE-Optimal Bandwidth (hLeft, hRight) (hL, hR) (hL, hR) (hL×1.5, hR×1.5) (hL×2, hR×2) hL Only

β̂ Intercept 0.563 (0.007) 0.566 (0.006) 0.563 (0.005) 0.558 (0.004) 0.576 (0.003)

β̂ Intraday Opt-in Notice 0.002 (0.008) -0.014 (0.008) -0.017 (0.005) -0.010 (0.005) —
β̂ Intraday Opt-in Notice (07:59:59, 09:00:00] — — — — -0.026 (0.005)
β̂ Intraday Opt-in Notice (09:00:00, 10:00:00] — — — — -0.036 (0.005)
β̂ Intraday Opt-in Notice (10:00:00, 11:00:00] — — — — -0.045 (0.004)
β̂ Intraday Opt-in Notice (11:00:00, 12:00:00] — — — — -0.055 (0.004)
β̂ Intraday Opt-in Notice (12:00:00, 13:00:00] — — — — -0.053 (0.005)

β̂ Account ID (Millions) [Relative to Cutoff] -0.053 (0.021) 0.008 (0.028) -0.016 (0.015) -0.039 (0.011) —
β̂ Intraday Opt-in Notice × Account ID -0.027 (0.027) -0.051 (0.026) -0.005 (0.013) 0.008 (0.009) —

β̂ Avg. Hist. Sess. Consumption (kWh) [Z-Score] — -0.127 (0.031) -0.132 (0.025) -0.118 (0.022) -0.018 (0.010)
β̂ Avg. Hist. Sess. Participation [Z-Score] — 0.231 (0.001) 0.229 (0.001) 0.230 (0.001) 0.229 (0.001)
β̂ Total P376 Baseline (kWh) [Z-Score] — 0.089 (0.025) 0.106 (0.020) 0.091 (0.017) 0.014 (0.008)
β̂ Est. Annual Consumption (kWh) [Z-Score] — -0.005 (0.004) -0.006 (0.003) -0.006 (0.002) -0.002 (0.001)
β̂ IMD Rank (Postcode) [Z-Score] — 0.004 (0.002) 0.007 (0.001) 0.006 (0.001) 0.006 (0.001)
β̂ Tenure with Octopus (Years) [Z-Score] — 0.025 (0.019) 0.009 (0.013) 0.001 (0.010) -0.014 (0.003)

β̂ Business Entity [Ref Non-Business] — 0.072 (0.076) 0.078 (0.065) 0.064 (0.055) 0.009 (0.028)
β̂ Has Non-Octopus Product [Ref Octo. Prod.] — 0.241 (0.027) 0.239 (0.022) 0.262 (0.006) 0.235 (0.012)
β̂ Has Smart Tariff [Ref Non-Smart Tariff] — 0.030 (0.005) 0.036 (0.004) 0.038 (0.004) 0.030 (0.003)
β̂ DNO Region : North [Ref Midlands & South] — -0.005 (0.003) -0.002 (0.003) -0.002 (0.002) -0.001 (0.002)
β̂ DNO Region : Scotland [Ref Midlands & South] — 0.000 (0.006) 0.008 (0.005) 0.009 (0.004) 0.005 (0.003)

Pre-treatment Covariates? No Yes Yes Yes Yes
Observations 99,678 88,422 142,509 186,790 377,569
Estimator OLS OLS OLS OLS OLS
Heteroscedasticity-Consistent Std. Errors (HC0) True True True True True
R2

Adj. 0.001 0.224 0.221 0.219 0.215

Note: The table presents parameter estimates and standard errors (parentheses) for the LATE (β̂ Intraday Opt-in Notice [Ref Day-ahead
Notice]), the expected average outcome in the control group (β̂ Intercept), and, partial correlations for pre-treatment covariates from models
fit to subsets of our Saving Session data using asymmetric bandwidths hLeft and hRight optimised to reduce mean-squared error (MSE) (see
Section AI.8.2). Hour-specific CATEs (β̂ Intraday Opt-in Notice (Time Range]) are from a model fit to a subset of our data obtained using
only the left MSE-optimal bandwidth. Results rounded to three decimal places. See Long and Ervin (2000) for a discussion and comparison
heteroscedasticity-consistent covariance matrices. See Table AT.25 for descriptive statistics and reference categories.
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AT.8 Field Trial Regression Output: Complete Results

Table AT.28: Models of total consumption (kWh) during the 12th Saving Session (field trial).

Equation Reduced Fm. Reduced Fm. Reduced Fm. 1st Stage 2nd Stage 2nd Stage 2nd Stage
Response Variable Consumption Consumption Consumption Intraday SMS + £ Consumption Consumption Consumption

β̂ Intercept 0.655 (0.001) 0.656 (0.001) 0.662 (0.001) -0.000 (0.000) 0.655 (0.001) 0.656 (0.001) 0.662 (0.001)

β̂ Day-ahead Email -0.021 (0.006) -0.018 (0.006) -0.011 (0.005) 0.000 (0.000) -0.021 (0.006) -0.018 (0.006) -0.011 (0.005)

β̂ Intraday SMS + £1.25 Incentive Assigned -0.007 (0.006) -0.007 (0.006) -0.007 (0.005) 0.228 (0.003) — — —
β̂ Intraday SMS + £1.25 Incentive — — — — -0.030 (0.025) -0.033 (0.026) -0.029 (0.021)

β̂ Avg. Hist. Sess. Consumption (kWh) [Z-Score] — — 1.017 (0.020) 0.002 (0.001) — — 1.017 (0.020)
β̂ Avg. Hist. Sess. Participation [Z-Score] — — -0.021 (0.001) -0.000 (0.000) — — -0.021 (0.001)

β̂ Total P376 Baseline (kWh) [Z-Score] — — 1.179 (0.012) -0.001 (0.000) — — 1.179 (0.012)
β̂ Est. Annual Consumption (kWh) [Z-Score] — — 0.058 (0.004) -0.000 (0.000) — — 0.058 (0.004)
β̂ IMD Rank (Postcode) [Z-Score] — — -0.002 (0.001) -0.000 (0.000) — — -0.002 (0.001)
β̂ Tenure with Octopus (Years) [Z-Score] — — -0.010 (0.001) 0.001 (0.000) — — -0.009 (0.001)

β̂ Business Entity [Ref Non-Business] — — -0.010 (0.072) 0.002 (0.004) — — -0.009 (0.072)
β̂ Has Non-Octopus Product [Ref Octo. Prod.] — — -0.041 (0.004) -0.005 (0.000) — — -0.041 (0.004)
β̂ Has Smart Tariff [Ref Non-Smart Tariff] — — -0.040 (0.004) 0.001 (0.000) — — -0.040 (0.004)
β̂ DNO Region : North [Ref Midlands & South] — — 0.012 (0.002) 0.000 (0.000) — — 0.012 (0.002)
β̂ DNO Region : Scotland [Ref Midlands & South] — — 0.012 (0.004) 0.001 (0.000) — — 0.012 (0.004)

Pre-treatment Covariates? No No Yes Yes No No Yes
Observations 638,242 540,395 540,395 540,395 638,242 540,395 540,395
Estimator OLS OLS OLS OLS IV-2SLS IV-2SLS IV-2SLS
Heteroscedasticity-Consistent Std. Errors (HC0) Yes Yes Yes Yes Yes Yes Yes
R2

Adj. 0.000 0.000 0.367 0.223 0.000 0.000 0.367
Partial F -Statistic 4728.325
Wooldridge’s Exogeneity Test p-value 0.433 0.554 0.485

Note: The table presents parameter estimates and standard errors (parentheses) for the ATE (β̂ Intraday Notice + Day-ahead Email [Ref Intraday Only]), the CACE (β̂ Intraday Notice + Intraday SMS+ £1.25
Incentive [Ref Intraday Only]), the ITT (β̂ Intraday SMS + £1.25 Incentive Assigned), the expected average outcome in the control group (β̂ Intercept), and partial correlations for pre-treatment covariates
from reduced form ordinary least-squares (OLS) regression models as well as the 1st and 2nd stages of two-stage-least-squares (2SLS) regression models. “Intraday SMS + £1.25 Incentive Assigned” is
the singular instrumental variable (IV). Results rounded to three decimal places. See Long and Ervin (2000) for a discussion and comparison heteroscedasticity-consistent covariance matrices. H0 for
Wooldridge’s regression text of exogeneity is that the endogenous variable “Intraday SMS + £1.25 Incentive Assigned” is exogenous. See Table AT.25 for descriptive statistics and reference categories.
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Table AT.29: Models of the probability of opting into the 12th Saving Session (field trial).

Equation Reduced Fm. Reduced Fm. Reduced Fm. 1st Stage 2nd Stage 2nd Stage 2nd Stage
Response Variable Participation Participation Participation Intraday SMS + £ Participation Participation Participation

β̂ Intercept 0.443 (0.001) 0.434 (0.001) 0.422 (0.001) -0.000 (0.000) 0.443 (0.001) 0.434 (0.001) 0.422 (0.001)

β̂ Day-ahead Email 0.026 (0.004) 0.026 (0.004) 0.025 (0.004) 0.000 (0.000) 0.026 (0.004) 0.026 (0.004) 0.025 (0.004)

β̂ Intraday SMS + £1.25 Incentive Assigned 0.024 (0.004) 0.022 (0.004) 0.022 (0.004) 0.227 (0.003) — — —
β̂ Intraday SMS + £1.25 Incentive — — — — 0.103 (0.016) 0.095 (0.017) 0.098 (0.016)

β̂ Avg. Hist. Sess. Consumption (kWh) [Z-Score] — — 0.014 (0.003) 0.001 (0.000) — — 0.014 (0.003)
β̂ Avg. Hist. Sess. Participation [Z-Score] — — 0.202 (0.001) -0.000 (0.000) — — 0.202 (0.001)
β̂ Total P376 Baseline (kWh) [Z-Score] — — -0.013 (0.003) -0.001 (0.000) — — -0.013 (0.003)
β̂ Est. Annual Consumption (kWh) [Z-Score] — — -0.007 (0.001) -0.000 (0.000) — — -0.007 (0.001)
β̂ IMD Rank (Postcode) [Z-Score] — — -0.002 (0.001) -0.000 (0.000) — — -0.002 (0.001)
β̂ Tenure with Octopus (Years) [Z-Score] — — 0.041 (0.001) 0.001 (0.000) — — 0.041 (0.001)

β̂ Business Entity [Ref Non-Business] — — 0.107 (0.025) 0.002 (0.004) — — 0.107 (0.025)
β̂ Has Non-Octopus Product [Ref Octo. Prod.] — — 0.108 (0.003) -0.005 (0.000) — — 0.109 (0.003)
β̂ Has Smart Tariff [Ref Non-Smart Tariff] — — 0.073 (0.002) 0.001 (0.000) — — 0.073 (0.002)
β̂ DNO Region : North [Ref Midlands & South] — — -0.009 (0.001) 0.000 (0.000) — — -0.009 (0.001)
β̂ DNO Region : Scotland [Ref Midlands & South] — — 0.008 (0.003) 0.001 (0.000) — — 0.008 (0.003)

Pre-treatment Covariates? No No Yes Yes No No Yes
Observations 650,809 551,494 551,494 551,494 650,809 551,494 551,494
Estimator OLS OLS OLS OLS IV-2SLS IV-2SLS IV-2SLS
Heteroscedasticity-Consistent Std. Errors (HC0) Yes Yes Yes Yes Yes Yes Yes
R2

Adj. 0.000 0.000 0.174 0.223 0.001 0.001 0.175
Partial F -Statistic 4814.807
Wooldridge’s Exogeneity Test p-value 0.021 0.021 0.010

Note: The table presents parameter estimates and standard errors (parentheses) for the ATE (β̂ Intraday Notice + Day-ahead Email [Ref Intraday Only]), the CACE (β̂ Intraday Notice + Intraday SMS+ £1.25
Incentive [Ref Intraday Only]), the ITT (β̂ Intraday SMS + £1.25 Incentive Assigned), the expected average outcome in the control group (β̂ Intercept), and partial correlations for pre-treatment covariates
from reduced form ordinary least-squares (OLS) regression models as well as the 1st and 2nd stages of two-stage-least-squares (2SLS) regression models. “Intraday SMS + £1.25 Incentive Assigned” is
the singular instrumental variable (IV). Results rounded to three decimal places. See Long and Ervin (2000) for a discussion and comparison heteroscedasticity-consistent covariance matrices. H0 for
Wooldridge’s regression text of exogeneity is that the endogenous variable “Intraday SMS + £1.25 Incentive Assigned” is exogenous. See Table AT.25 for descriptive statistics and reference categories.

121



AT.9 Cost Effectiveness: Comparison Between P376 and DiD Reductions per Saving Session

Table AT.30: Cost to NGESO per MWh of DFS utilization using clipped P376 methodology, our DiD methodology and marginal balancing mechanism actions.

Session Total 1 2 3 4 5 6 7 8 9 10 11 12 13
Official demand reduc-
tion of all DFS providers
(MWh)

3157.61 133.39 192.81 216.92 211.61 398.67 1771.19 396.8 283.17 175.48 241.55 269 231.36 235.7

Official demand reduction
non Octopus Energy DFS
providers (using clipped
P376) (MWh)

1294.4 23.88 82.62 101.55 103.67 120.79 89.3 209.23 35.26 76.45 105 115.13 120.48 111.06

Octopus Energy official
demand reduction (using
clipped P376) (MWh)

1863.21 109.51 110.19 115.37 107.94 277.88 81.89 187.56 247.91 99.03 136.55 153.87 110.88 124.64

DiD estimate of “actual”
demand reduction by Octo-
pus Energy (MWh)

1642.09 93.02 121.69 111.46 92.83 277.57 68.80 185.99 216.33 67.89 107.45 106.94 113.67 78.42

Costs of DFS procurement
of Octopus Energy cus-
tomer demand reduction
(k£)a

6186.36 328.55 330.56 346.1 323.81 833.63 245.67 912.79 990.38 297.08 409.65 461.6 332.64 373.91

Cost per MWh “actual” de-
mand reduction (£/MWh)

4580.09 3482.47 3318.6 3838.85 4026.56 4532.78 4488.35 5774.05 5159.59 4425.74 4321.21 4712.1 4649.88 5658.61

Cost of marginal Balanc-
ing Mechanism action
(£/MWh)b

1152.52 335 980.89 695 590 5500 350.63 412.5 512.67 277 291 478 253.25 179.5

Note: We show a series of connected facts in this table. First, Octopus Energy contributed 59% of the total demand reduction of the Demand Flexibility Service on the events that Octopus Energy participated
in (where each DFS provider measured its reduction using the NGESO’s prescribed methodology). Second, comparing our DiD methodology to NGESO’s (“clipped” pre-post-style) methodology – only
for Octopus Energy customers, during the 13 DFS events Octopus energy participated in – suggests that the official methodology typically overestimates demand reduction. However, this pattern is not
universally true; in the second and twelfth sessions, our demand reduction estimates are larger than the official results. Overall, our DiD methodology shows a demand reduction of 1642 MWh from Octopus
Energy customers, lower than the official demand reduction of 1863 MWh reported by the P376 methodology. Third, when we compare the costs to NGESO given our estimate of “actual” demand reduction,
we found slightly higher costs than the official £3,000/MWh that ESO procured under the assumption of demand reduction according to the official methodology. Fourth, the marginal Balancing Mechanism
action cost is substantially lower than the cost of demand reduction the DFS provided during the 29 half-hours in which Saving Sessions took place, except for the fifth Saving Session on December 12, 2022,
when the marginal balancing action’s cost reached £5,500/MWh.

aWe use Settled Volume (MWh) and expenditure (£) reported by NGESO in the National Grid Data Portal for DFS Test and Live events. The settled costs of Octopus Energy customer demand reduction
is calculated by multiplying the total settled costs by the proportion of Octopus Energy delivery over total delivery (National Grid, 2023g,h).

bPrices are from LCP Delta (2023) and calculated as the average marginal price over the settlement periods in which the events took place.

122



AT.10 MVPF: Assumed NGESO Costs Based on Saving Sessions Payments to Customers

Table AT.31: Rewards given to Octopus Energy customer for each type of event.

Type of event OctoPoints awarded per kWh Value [£] (1 OP =0.00125£/kWh) NGESO payments (£/kWh)
Test event 1,800 2.25 3

Live event - Jan 23, 2023 2,700 3.375 4.125
Live event - Jan 24, 2023 3,200 4 4.75

Note: NGESO provided a Guaranteed Acceptance Price of £3 for every kWh of demand reduction during Test events calculated with the
P376 methodology to all the retailers which participated in the Demand Flexibility Service. All retailers then decided how to incentivise their
customers for their demand reduction with various incentive structures. Octopus Energy rewarded customer with OctoPoints, a currency
that could be used directly to transfer funds into their Octopus Energy account or be converted directly into cash. For each kWh of demand
reduction, Octopus Energy customers received 1,800 OctoPoints, equivalent to 2.25 £/kWh for all the Test events. For Live events, prices were
calculated through a private auction mechanism, so these prices are not publicly available for each supplier. OE awarded 2,700 and 3,200
OctoPoints for the Live events held on 2023-01-23 and 2023-01-24 respectively. We assume that Octopus Energy retained the same amount of
money per customer per kWh of demand reduction – £0.75. We thus obtain assumed auction prices of £4.125 and £4.75.

AT.11 MVPF: Greenhouse Gas Emission Factors and Damage Costs

Table AT.32: GHG emissions factors and damage costs for NOx, SOx and PM2.5 pollutants.

Pollutant emitted Gas emission factor [tonne/MWh] Coal emission factor [tonne/MWh] Damage costs [£2023/tonne]
NOx 9.00e− 05 3.24e− 04 8,148
SOx 3.60e− 06 2.92e− 04 16,616
PM2.5 2.20e− 07 2.23e− 06 74,769

Note: Emission factors represent the amount of pollutants released in a particular activity. In this case, we use the emissions factors for NOx,
SOx and PM2.5 from Department for Environment, Food and Rural Affairs (Defra) (2023) related to the production of electricity using natural
gas or coal as the main fuel. To asses the the air quality impact of our campaign, we need to use the damage costs of each of these pollutants
from UK GOV (2023a). These represent a set of monetary impact values per tonne of emission.

123



AT.12 MVPF: Comparison of MVPFs Assuming Different Demand Reduction Methodolo-
gies

Table AT.33: Values of MVPF for each individual Saving Session and for the whole program.

Day MVPF - DiD MVPF - P376 MVPF (VoLL scenario) - DiD MVPF (VoLL scenario) - P376
November 15, 2022 1.06 1.08 2.76 3.08
November 22, 2022 1.07 1.08 3.29 3.08
November 30, 2022 1.06 1.08 3.01 3.08
December 1, 2022 1.06 1.08 2.78 3.08
December 12, 2022 1.02 1.04 3.03 3.04
January 19, 2023 1.05 1.08 2.74 3.08
January 23, 2023 1.02 1.03 2.47 2.48
January 24, 2023 1.02 1.02 2.12 2.29
January 2023 1.05 1.08 2.42 3.08

February 13, 2023 1.05 1.08 2.63 3.08
February 21, 2023 1.05 1.08 2.44 3.08
March 15, 2023 1.05 1.08 3.13 3.08
March 23, 2023 1.04 1.05 2.31 3.08

Total 1.05 1.05 2.63 2.85

Note: The MVPF of Saving Sessions we calculate using the costs and benefits outlined in Sections 5.3.1 and 5.3.2. In columns 2 and 4, we use
the demand reduction derived from our Octopus versus Bulb DiD to value the CO2 carbon emissions abatement and value of lost load. In
columns 3 and 5, we show the MVPF where demand reduction is assumed to be the estimate from NGESO’s official methodology (“P376”).
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