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Abstract

We develop novel estimates of peak and off-peak price elasticities for urban mass tran-

sit demand in San Francisco using a large natural experiment with 3.6 million trip sessions

and a natural field experiment that both have exogenous price subsidies. We then estimate

the welfare impacts for these price subsidies using a sufficient statistics approach. Our

analysis suggests that off-peak subsidies can increase welfare, but the positive effects are

reduced when consumers take the decisions of others into account compared to when they

do not. We also find a large variation in the welfare impacts of shifting travel to different

periods, which is explained by differences in demand and congestion characteristics. Fi-

nally, we show that the targeting of subsidies can increase welfare, but need not do so if

the regulator does not have accurate information on demand.
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1 Introduction

There are many problems in which economic welfare may be increased through shifting de-

mand across peak and off-peak periods (Boiteux, 1960). Applications include automobile

travel, mass transit, electricity, energy and telecommunications. In this paper, we focus on

mass transit. The general problem we address is estimating the economic welfare impacts of a

price change on consumption in the peak and off-peak periods. Our welfare estimates rely on

well-identified demand elasticity estimates within and across time periods. We also allow for

prices to differ from marginal cost and for externalities in consumption, such as congestion

and pollution.

Using a large natural experiment and a natural field experiment, we develop novel estimates

of peak and off-peak price elasticities for urban mass transit demand in San Francisco. The

experiments were conducted by the Bay Area Rapid Transit (BART) in California.1 Both ex-

periments allow us to obtain causal estimates of the price elasticities of demand. The first,

which includes 17,500 BART riders (7% of BART riders) and over 3.6 million trip sessions, is

a natural experiment with a price change in the off-peak period for six months. Riders were

staggered into the pricing program over the course of six weeks. Prices were reduced an hour

before the peak period (630am-730am) and an hour after the peak period (830am-930am).

The second is a natural field experiment with randomized prices across 1,900 riders over four

months (i.e., 77,000 trip sessions). The experiment incentivized treated customers to shift

their riding demand into the least congested train within a 40 minute time window from their

usual departure time by lowering prices in the new time window. With detailed consumer

level data on demand and individual characteristics, both of these experiments yield own and

cross price elasticities, which are used in the welfare analysis. Across both experiments, we

have train-level data on the weight of the train and the time the consumer enters and leaves

a station, allowing us to measure congestion. We estimate the welfare impacts of the price

subsidies in the experiments using a sufficient statistics approach (Chetty, 2009).

The subsidies in both experiments influenced consumer choice in the expected direction.

They reduced travel in the period that did not receive the subsidy, and increased travel in the

period that received the subsidy. We estimated an own price elasticity for the period in which

consumers received the subsidy and a cross-price elasticity for the period in which they did

not. The own and cross price elasticities are around -0.86 and 0.44 respectively in the natural

experiment and -0.94 and 0.54 respectively in the field experiment. These estimates suggest

1BART is a rail and subway system that serves the greater San Francisco area. It is the urban public transit
system that Daniel McFadden used to estimate various discrete choice models that contributed to his Nobel
prize work (McFadden, 1974; Domencich and McFadden, 1975; McFadden et al., 1977; McFadden, Tye and
Train, 1977; McFadden, 2001).
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some departure time flexibility for BART users. Other non-experimental elasticity estimates

for the BART system as a whole are comparable to our own elasticity for off-peak demand

(See, e.g., McFadden (1974)). But our own elasticity estimate is a little higher in absolute

value than the -0.6 to -0.75 range in the review of estimates in the US by Litman (2004) and

Holmgren (2007), and those estimated in Mexico by Davis (2021).2

Our two experiments offer different insights into the impact of providing subsidies at partic-

ular times for economic welfare. We find that the subsidy in the natural experiment generally

increases welfare. In the base case, we show that the marginal value of public funds (MVPF)

is 1.6 in trying to shift travel to the off-peak period from the peak period (730am-830am).3

This means that for each additional dollar of net cost to the government, the marginal benefit

to all parties is $1.60. We also calculate the net benefits per dollar of subsidy in the natural

experiment, and find that the net benefits are $0.36 per dollar of subsidy expenditure.4

In the field experiment, we had price variation across more time periods and show that the

welfare benefits varied dramatically across routes and time periods due to differences in de-

mand and congestion characteristics. In particular, we show that net benefits per person in

the field experiment are sometimes less than zero. We also show that some MVPFs in the

field experiment are less than one, which means that the willingness to pay associated with

the policy is less than the net cost to the government.5

We do several sensitivity analyses to examine the robustness of our main findings. In partic-

ular, we examine three sets of behavioral assumptions about consumer response to see how

they would change our welfare results. The first relates to how welfare results would change

if we scaled up the subsidy to all BART customers, but allowed for some customers to be less

responsive to the subsidy than others, perhaps because of selection effects. The second relates

to measuring the impact on consumer welfare under the assumption that consumers take the

full impact of others’ behavior into account in making their transit choices–a case we refer to

as endogenous congestion.6 In both the scaling and endogenous congestion simulations, the

effect on per capita welfare is to reduce the net benefits from the subsidy by up to 47%. The

third assumption relates to the level and shape of the congestion damage function. We find

2We have not found other well-identified cross-price elasticity estimates for peak and off-peak in public
transit, and thus do not provide a comparison

3See Hendren (2020) and Finkelstein and Hendren (2020) for excellent reviews of this literature. Our MVPF
of 1.6 is quite favorable in comparison to the marginal cost of public funds of around 0.8 to 1 through changes
in the linear tax rate (Hendren, 2020).

4The net benefits measure we use in our welfare model is based on total net benefits for a discrete change in
the subsidy, and is in dollars. In contrast, the MVPF is a marginal measure that is dimensionless. Both can be
useful in comparing policies.

5We also do a calculation on the optimal subsidy and find that the optimal subsidy may be substantially
higher than the actual subsidy based on the natural experiment.

6This concept could apply to any externality where consumers consider the impact of others’ behavior in
their decisions.
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that for our parameter estimates the shape of the damage function does not appear to have a

large effect on our welfare results.

A final set of findings on welfare relates to how subsidies should be targeted. We examined

this issue in two ways. First, using our natural experiment, we examined how net benefits

per person might change if the most congested route were targeted. We found that targeting

users of the most congested route increases average net benefits by 15%. Second, our entire

natural field experiment is focused on the issue of targeting. While the field experiment

shows that targeting can be effective in shifting demand, the main takeaway is that these shifts

may not always increase welfare. A key reason that targeting does not necessarily increase

welfare is because the machine learning algorithm used for targeting in the field experiment

only takes into account information on crowding. It does not take into account information

on unobserved demand characteristics, which are also central for determining the welfare

impact of the subsidy. Our experiments suggest that targeting may require a substantial

amount of information on economic fundamentals, such as demand, to increase the likelihood

that welfare will actually increase with targeting.

Our paper relates to three important research areas. First, our empirical analysis builds on

work in sufficient statistics. Our paper is most closely related to Jacobsen et al. (2020). These

authors examine how sufficient statistics can be applied to externality-correcting policies;

however, they assume markets are perfectly competitive and that consumers take the exter-

nality as given, and do not adjust their behavior in response to the level of the externality. We

relax those assumptions in Jacobsen et al. (2020), but retain the assumption that consumers

are fully informed.7 Our model also relates to work by Kreindler (2022) on estimating en-

dogenous congestion, but our model differs in terms of its focus on urban mass transit and its

theoretical underpinnings.

Second, we build on a large literature on congestion and the welfare effects of peak pricing

schemes. It has long been argued that many sectors could benefit from peak-load pricing

(Vickrey, 1963; Mohring, 1972; Glaister, 1974; Train, 1977; Glaister and Lewis, 1978; Win-

ston, 1985; Jansson, 1993; Parry and Small, 2009). There have been attempts to estimate

the welfare implications of changes in peak or off-peak prices for mass transit (e.g., Parry

and Small (2009); Joskow and Wolfram (2012); Knittel and Sandler (2013); Winston (2013);

7We do not address issues of estimating welfare with adverse selection, information asymmetries, market
structure issues and behavioral agents. For examples of such work, see Bundorf, Levin and Mahoney (2012);
Hendren (2013); Weyl and Fabinger (2013); Mahoney and Weyl (2017); Farhi and Gabaix (2020); Ito, Ida and
Tanaka (2021). Several studies that focus on externalities and internalites are also related to our work, including
Allcott, Mullainathan and Taubinsky (2014); Piketty, Saez and Stantcheva (2014); Allcott and Taubinsky (2015);
Allcott, Lockwood and Taubinsky (2019). These studies fit within the general framework developed by Kleven
(2021).
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Levin, Lewis and Wolak (2017); Kreindler (2022); Tarduno (2022)).8 Moreover, there appears

to be a dearth of well-identified estimates of demand elasticities and cross elasticities for mass

transit that have been used to estimate welfare effects. For instance, Parry and Small (2009)

estimate the welfare effects of urban transit subsidies using a structural approach, but note

that “[l]ittle information is available about shifts of transit riders across time periods” (p. 17).

Our empirical analysis helps to address this gap in the literature.9

Third, we add to the literature on optimal targeting. Several papers examine how targeting

price changes or interventions could increase welfare (Rodrik, 1987; Chassang et al., 2012;

Dupas, 2014; Allcott and Taubinsky, 2015; Cohen, Dupas and Schaner, 2015; Alatas et al.,

2016; Byrne, Martin and Nah, 2019; Polyakova and Ryan, 2019; Farhi and Gabaix, 2020;

Gerarden and Yang, 2021). Our field experiment targeted subsidies using detailed data on

congestion and historical consumer behavior, which is typical of many machine learning al-

gorithms in transport (Tizghadam et al., 2019) and other markets (Mullainathan and Spiess,

2017; Athey, 2018; Knittel and Stolper, 2019; Burlig et al., 2020; Christensen et al., 2021;

Aiken et al., 2022). However, not having information on price elasticities of demand for travel

and consumers’ willingness to shift their travel times can limit the effectiveness of targeting

subsidies using machine learning. For instance, we show in some time periods that targeted

pricing using a machine learning algorithm actually lowered welfare.

The paper is structured as follows: Section 2 provides an overview of the theory that allows

us to estimate welfare impacts of the experiment. Section 3 develops demand estimates for

the natural experiment and section 4 develops demand estimates for the field experiment.

Section 5 implements our welfare analysis. Finally, Section 6 concludes.

2 Overview of the Theory

We develop a theoretical model that allows us to estimate the welfare effects of a subsidy using

sufficient statistics. We present the details of our welfare model in appendix A.1. The model

identifies key demand parameters of interest that are obtained from our experiments. In

8There have been many papers that analyze the impact of peak-time pricing on overall demand and welfare
(Borenstein, 2005; Wolak, 2007; Joskow and Wolfram, 2012; Jessoe and Rapson, 2014; Ito, Ida and Tanaka, 2018;
Burkhardt, Gillingham and Kopalle, 2019; Fowlie et al., 2021; Williams, 2021). Our paper builds on this work
by developing an analytically tractable approach for estimating welfare changes of peak and off-peak pricing in
the presence of externalities, where the externalities can affect demand.

9Other papers that estimate changes in subway demand with a change in prices include Davis (2021), who
estimates the price elasticity of demand for subways in Mexico. Davis’ analysis differs from ours in that he
focuses on the impact of general price decreases in subway systems, and not on differences in peak and off-peak
travel aimed at reducing an externality. Another paper by Yang and Long Lim (2018), estimates the impact of
temporary free rides on early morning subway demand in Singapore, and finds a meaningful shift to earlier
trains.
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addition we consider whether consumers take the behavior of others into account in making

their decisions.

The basic model has two types of agents, identical consumers and a firm (e.g., a utility). A

representative consumer maximizes utility over peak and off-peak travel, and a numeraire

good. We assume that consumer has a well behaved utility function and quasi-linear prefer-

ences. In addition to the consumers, a regulated utility is assumed to minimize the cost of

meeting demand. Consumer choices generate an externality that affects the utility, which can

be thought of as congestion or delay in our application.

We allow prices to deviate from their marginal private cost (which is consistent with pricing

in many regulated markets), and we allow for subsidizing particular consumers. The price

subsidy is aimed at encouraging off-peak travel in our first experiment (experiment 1), and

shifting particular individuals into less crowded trains in our second experiment (experiment

2). The primary aim of the subsidy is to reduce an externality, which can be thought of as

crowding on a subway or delay. In our application, we consider both.

The key results from this model are intuitive. The welfare effect of a subsidy depends on how

consumers respond to the subsidy, and the extent to which prices deviate from the marginal

social cost. If the price is above the marginal social cost in a particular period, and travel

increases as a result of the policy intervention (e.g., a subsidy), then it contributes to an in-

crease in welfare. Summing the welfare changes across each period gives the overall change

in welfare.

The equation we use to estimate the per capita welfare effect of an off-peak subsidy is given

by:

1
N

(W (s′)−W (0)) = (p −MSC1)
dx1

ds
s′ + (p − 1

2
s′ −MSC2)

dx2

ds
s′ (1)

where N is the number of consumers; W (s′) is the economic welfare of a subsidy, s′; and

W (0) is the welfare associated with no subsidy.10 dx1
ds and dx2

ds are the demand responses to

the subsidy in the peak and off-peak periods, respectively. These are assumed to be constant.

The price of the good is p, assumed to be constant in both periods. The marginal social cost

in periods 1 and 2 are MSC1 and MSC2, respectively. Marginal social cost is the sum of

the marginal private cost (MPC), which is assumed to be constant across periods, and the

marginal external cost, MEC1 and MEC2, which can vary across periods.

The derivation of equation (1) makes use of the envelope theorem for the consumer maxi-

mization problem. When the off-peak subsidy increases, consumers may alter their travel

10We define the change in welfare as the change in producer plus consumer surplus, assuming the subsidy is
a lump sum transfer. See appendix A.1 for details.
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demand because of an equilibrium change in the subsidy, the price or the congestion level,

but the resulting changes in consumption do not a have direct impact on consumer utility.

This is consistent with the sufficient statistics approach (Harberger, 1964; Chetty, 2009; Ja-

cobsen et al., 2020).

An important issue for welfare is how consumers respond to the subsidy. We consider the

two polar cases of exogenous congestion and endogenous congestion. Exogenous congestion

assumes that consumers ignore the impact that the subsidy has on the level of congestion.

Endogenous congestion assumes consumers take into account how others will respond to the

externality. The two cases can provide insights into the welfare impacts of how interventions

scale. The exogenous congestion case may be more appropriate when estimating the welfare

impacts of a small-scale subsidy, such as a pilot. The endogenous congestion case may be more

appropriate when measuring the the welfare impacts of a relatively large-scale intervention,

such as providing a subsidy to all customers.11

These two cases will typically result in different values for demand, as measured by dx1
ds and

dx2
ds . Empirical estimates for these cases are presented in section 5. The theoretical relation-

ship between the endogenous case and the exogenous case is discussed in appendix A.16.

3 Natural Experiment

To estimate the welfare impacts of the subsidy, we will need causal estimates of the impact of

a subsidy on peak and off-peak travel. This section explains how we derive these estimates for

the natural experiment. We provide a brief overview of the Bart network (3.1), a description

of the price subsidy and natural experiment (3.2), a discussion of our identification strategy

(3.3), and present the key results on peak and off-peak demand (3.4).

3.1 The BART network

The natural experiment was conducted with BART, which is a large public transit system

serving the San Francisco Bay area in California.12 BART is the fifth-busiest heavy rail rapid

11This issue applies in many settings, as List (2022) notes.
12The heavy rail elevated and subway system connects San Francisco and Oakland with Alameda, Contra

Costa, and San Mateo counties across 112 miles of track connecting 46 stations. BART has an average of 423,000
weekday passengers and 124.2 million annual passengers in fiscal year 2017 (BART, 2017),
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transit system in the United States. Figure A8 in Appendix B shows the network map.13

The prices on BART are comparable to those of other U.S. commuter rail systems and are

higher than those of most subways, especially for long trips. The minimum price is $1.95

(except for San Mateo County trips) under 6 miles (9.7 km), and the maximum one-way price

including all possible surcharges is $15.70, the journey between San Francisco International

Airport and Oakland International Airport (2017 prices).14 Figure A9 in Appendix B plots

the distribution of fare by routes. The mean fare for non-airport routes is $4.16, with a median

fare of $4.25. The mean and median fare for airport route is $9.60.

3.2 The Perks Treatment

The treatment changed the relative peak to off-peak prices, and Bart called this the Perks
program. To be eligible for the new pricing program, customers had to have a Clipper ID

number.15 We used Clipper card data for our study. The card records the amount paid,

the time the person entered the departing station, and the time they left the arrival station.

Linking each user with their Clipper card was necessary to give them the pricing subsidy.

This subsidy was based on the frequency, timing, and length of their trips.

The Perks program was advertised over a four week period through direct outreach at sta-

tions, media coverage, and employer partnerships. There was some natural time variation

in some stations receiving ads before others, and we use this staggered variation later in this

section. An example of the ads for direct outreach is shown in Figure A10 in Appendix B.

The left hand side of the figure is an example of the basic ad. The right hand side provides a

fuller description of the program with eligibility criteria. The program started on August 23,

2016 and ran until the end of February 2017.

The price subsidy changes based on the time the journey starts. For every mile traveled

between 630am and 730am or 830am and 930am, the consumer would get a 11.25% reduction

in the off-peak price. The peak time at BART was between 730am and 830am. As part of the

program to incentivize people to take part, it also gave a modest 2.25% reduction in the peak

13BART has five rapid transit lines; most of each line’s length is on track shared with other lines. Trains on
each line run approximately every 15 minutes on weekdays and 20 minutes during evenings, weekends and
holidays; stations on the section of track between Daly City and West Oakland are served by four lines and
therefore have 16 trains an hour on each track. BART service begins around 4:00 am on weekdays, 6:00 am on
Saturdays, and 8:00 am on Sundays.

14The price is based on a formula that takes into account both the length and speed of the trip. A surcharge
is added for trips traveling through the Transbay Tube, to Oakland International Airport, to San Francisco
International Airport, and/or through San Mateo County, a county that is not a member of the San Francisco
Bay Area Rapid Transit District. The farthest possible trip, from Pittsburg/Bay Point to Millbrae, costs less
because of the $4 additional charge added to SFO trips and $6 additional charge added to Oakland trips.

15Most regular BART customers have a Clipper card, which is a contactless smart card accepted on all major
Bay Area public transit agencies, and may be used in lieu of a paper ticket.
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price. A relative price difference between peak and off-peak price of 9% was thus created by

the Perks program. That is the exogenous change in prices that we will leverage to estimate

demand. To receive the subsidy, participants needed to have an active PayPal account that

used the same email address as their BART Perks account.

3.3 Identification

Identification of dx1
ds and dx2

ds comes directly from this natural experiment. We obtain identifi-

cation of peak shifting due to changes in off-peak prices using two strategies. First, we com-

pare the self-selected Perks users with the rest of the network using a difference-in-differences

framework (we have data on all individual rides on BART before and during the natural ex-

periment). We can determine the share of rides that are in the peak and off-peak hours and

use this to obtain a causal estimate of the Perks program on demand. We test for parallel

trends in peak and off-peak shares before the Perks program began, and find that the peak

and off-peak trends for the Perks and non-Perks users are statistically indistinguishable.

Second, we use the fact that not all BART customers were brought onto Perks at the same time.

As mentioned above, some stations advertised the subsidy program before others, so we have

quasi-random variation in when people saw the advertisements to the Perks program. The

program officially started on August 23th, 2016, but 18.9% of the sample were enrolled in the

program after one month from the start of the program. This is our ‘late’ sample. Comparing

‘early’ versus ‘late’ enrollers allows us to estimate the impact of Perks on the number of BART

trips, as opposed to just the shares of peak and off-peak travel. Again, we find that the trends

for early and late enrollers are quite similar prior to the treatment starting (i.e., they are

statistically indistinguishable from each other). We estimate the cross-price elasticity using a

difference-in-differences approaches to estimate our welfare model.

We have individual level trip data for the 17,545 BART users who signed up for Perks for

the six months before the Perks program began (February 2016) and six months during the

Perks program (up to February 2017). This is a total of 2,119,588 individual journeys on the

BART network for twelve months. We also have data on the rest of the BART network at 15

minute intervals for the same time period which corresponds to 72,098,160 individual rides

for non-Perks customers.

Because prices were not perfectly randomized across BART users, a potential issue with our

causal estimates could arise if those who signed up for the program knew that they were

more likely to reduce their peak demand during the program. While we cannot rule out this

possibility, the near perfect parallel trends in both identification strategies suggest that this

is unlikely. To address any concerns, we provide an external check on the results obtained
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here with our field experiment described in section 4, which randomizes prices across BART

consumers. Importantly, we will compare the elasticities from the field experiment to those

generated from the quasi-experiments considered here. We show that they are similar.

3.4 Results

This results section is based on the two identification strategies presented above. Before we

present the results, we describe the data of the Perks users and how it compares to the BART

non-Perks users. For the rest of the customers using BART, we know what rides (time, day,

stations) have been taken in the same time frame as our opt-in sample, but we can not identify

individual accounts.

We first compare the distribution of travel demand for our 17,545 BART users in the Perks

program with the demand from non-Perks users. Figure 1 below shows the raw distribution

of rides taking place in five minute intervals before and during the Perks program. Panel

(a) shows demand before the Perks program and panel (b) shows demand during the Perks

program. For both panels (a) and (b), the y-axis is the share of trips. The figure reveals that the

overall shape of the dashed line for the non-Perks sample is very similar in panels (a) and (b).

In contrast, the line for the Perks sample appears to be steeper and higher for the shoulder

hours in the morning (i.e., the subsidized hours). This provides some visual evidence that

the increase in demand in the shoulder hours from the Perks commuters during the Perks

program does not happen with the rest of the BART network customers during the Perks

program. This evidence suggests that once customers received the new price changes, they

shifted some of their demand to the shoulder off-peak hours from out the peak hour.

3.4.1 Impact of Prices on Demand: Empirical Approach 1

For our first identification approach in comparing the Perks users to the rest of the BART

network users, we must ensure that we have parallel trends in the peak and off-peak shoulder

hours for the Perks BART users and the non-Perks BART users before the experiment began.

This is the necessary condition for our difference-in-differences approach. Figure 2 presents

the daily share of peak hour weekday journeys for the Perks and non-Perks users before and

during the experiment. This figure shows that there is a very similar trend in the raw peak

hour demand data for the Perks users (black line) and the non-Perks users (the gray line)

before the Perks program started on August 23, 2018. The trends for the two groups are not

statistically significantly different (see the econometric test of pre-trends in peak and off-peak

demand in the Perks and non-Perks samples in Figure A12). This allows us to estimate the
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Figure 1: Comparing Perks program participants with the rest of the BART network

(a) Before Perks (b) During Perks

Note: The figure plots the average daily share of trips taken by the participants in the first experiment in each
time interval from 530am-1130am. It also plots on the same figure the average share of daily trips at each time
interval taken by the rest of the BART users. The sample for Panel (a) includes April 1, 2016 to August 22, 2017
for all weekdays. The sample for Panel (b) includes August 23, 2016 to February 28, 2017 for all weekdays.

impact of the price change on peak demand using a difference-in-differences framework.

It is also clear from Figure 2 that there is a very similar trend in the shoulder off-peak hour

demand data between the Perks users (black line) and other users (the gray line) before the

Perks program started. The trends for the two groups are not statistically significantly differ-

ent before July 2016, as suggested in Figure 2 (see the test of pre-trend in Figure A12). This

allows us to estimate the impact of the price change on shoulder demand using a difference-

in-differences framework.

Given these two parallel trends in peak and off-peak shoulder hours before the Perks program

started for Perks and non-Perks users, we can now estimate the following panel fixed effects

model:

ygt = β1 ∗ P erkst + β2 ∗ T reatedg ∗ P erkst + β3T reatedg +γt + εit (2)

where ygt is the share of peak hour (730am - 830am) trips in the morning from 5:30am-

10:30am on date t for group g. Treatedg is an indicator for Perks users with the omitted

group being non-Perks users. Perkst is an indicator for the period in which the Perks program

is implemented from August 23, 2016 to February 28, 2017. γt is a date fixed effect that

controls for unobserved changes in travel patterns such as a date-specific service disruption.
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Figure 2: Share of peak and off-peak shoulder hour demand for Perks users versus the rest of
the BART network users (non-Perks)

(a) Peak hour (b) Shoulder off-peak hour

Note: Panel (a) shows the five week moving average of the share of peak-hour demand (730am-830am) among
all trips from 5.30am-10.30am for Perks and non-Perks users. Panel (b) shows the moving average of the share of
shoulder off-peak demand (630am-730am and 830am-930am) among all trips from 5.30am-10.30am for Perks
and non-Perks users. The sample includes weekdays from April 2016 to March 2017. The vertical line represents
the beginning of the first experiment on August 23, 2016.

Our sample period covers April 1, 2016, to February 28, 2017. It covers five months before

the Perks program started and a six month period when the Perks program was running. Our

null hypothesis is that the difference-in-difference estimator, β2, is equal to zero for both the

peak period and the off-peak shoulder hour.

Table 1 presents the estimates of equation 2. Column (1) reports estimates on the demand

share of peak hour. We find that comparing with other users, Perks users reduce their share

of peak hour trips by 2.1 percentage points during the program period. Column (2) reports

estimates of the share of off-peak shoulder hours. We find that using non-Perks users as the

reference group, Perks users have a 2.6 percentage point increase in the share of off-peak

shoulder hour trips during the program period compared to before.

We also estimate an alternative specification that controls for differences between Perks and

non-Perks users in terms of the routes they take (defined by the entry and exit station). We

compute the weekly share of peak hour (and off-peak shoulder hour) trips for Perks users and

for non-Perks users for each individual route in our data This specification allows for some

route has sparse number of rides at daily level. We then estimate equation 2 using the weekly

share of peak hour (and off-peak shoulder hour) trips for each route and group as outcome,

controlling for route-group fixed effects (i.e., the route-specific travel pattern for Perks and

12



Table 1: Difference-in-difference estimates - Participants and rest of network

Outcome: Share of all trips in morning
All dates

Peak Hour Off-peak Shoulder Hour
(1) (2)

Treated users × Perks Period (β2) -0.021∗∗∗ 0.026∗∗∗

(0.0029) (0.0023)

Treated users (β3) -0.0030∗∗∗ 0.0744∗∗∗

(0.0008) (0.0016)
Observations 466 466

Note: Includes daily observations for Perks users and non-Perks users. Sample includes weekdays from April 1,
2016 to February 28, 2017, excluding public holidays. Standard errors in parentheses are clustered by week.

non-Perks users). Table A13 reports the estimates. We find very similar effects as those shown

in Table 1.

We next analyze whether the effect of the subsidy applies to the two busiest stations in the

BART network, Montgomery Street and Embarcardero. In Table A15 we split the routes into

two directions - those that travel from the east of the two stations, thereby crossing the Trans-

bay tube, and those that travel from the west of the two stations. We find that the treatment

effect in shifting riders from the peak to the off-peak hour is much larger for the congested

routes travelling from the east of the Transbay exiting at Montgomery Street and Embar-

cardero, compared to those travelling from the west that are less congested.

We also examine the change in demand for peak and off-peak demand when the Perks in-

centives are removed, which allows us to understand if the incentives created a persistent

change in behavior. After six months of the price subsidy program, the program ended. We

have BART demand data for those that signed up versus those that did not for six months

after the program concluded. We find that while the peak to off-peak shift is lower after the

program, there is a persistent and significant treatment effect. We find that the long-term

change in peak hour demand without the subsidy was -0.9% (see appendix Table A12). One

possible explanation is that people change their demand during the experiment, and once the

price changes have been removed, it is costly for users to change their habits or schedules to

revert back to their pre-treatment levels. Another explanation is that people may find better

ways to commute that increase their welfare, which is supported by evidence from London

and Singapore (Larcom, Rauch and Willems, 2017; Yang and Long Lim, 2018).

Despite parallel trends prior to Perks, the customers who selected into Perks may have known

prior to Perks that they might want to change their early morning commute time in the future.
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This is impossible to test with our data but given how strong the parallel trends are, we find

this outcome is unlikely. Another caveat here is that we only observe shares of demand and

not absolute demand (i.e., number of trips). This is where the next section and identification

strategy helps us.

3.4.2 Impact of Prices on Demand: Empirical Approach 2

For the second empirical approach, we estimated how the Perks price program changed de-

mand in the first month in the program, when 18.9% of users had not already signed up

(through the staggered roll-out of the advertisement).We define ’early’ enrolled Perks users

as those who enrolled in Perks from August 23 to September 2, 2016, where our ’late’ control

group consist of users who eventually enrolled between Oct 1 to Nov 5, 2016. Therefore in

our treatment time period (August 23 to September 31, 2016), all the late enrolled Perks users

would have not enrolled in the program yet and thus constitute an effective control group for

the travel behavior in the absence of the Perks program.16

A benefit of using early versus late Perks users is that we can analyze absolute changes in

demand at the individual level as a result of the price change. Moreover, both early and

late customers all enrolled into the price change, so unobserved characteristics are even less

likely to drive the change in peak demand. In addition, the approach of comparing an early

treatment group to a late control group is suggested by Callaway and Sant’Anna (2021) as a

way to overcome some of the issues in two-way fixed effects models. Figure A6 shows the

cumulative distribution for BART enrollment as a function of time.

We can analyze whether the pre-Perks trend before the Perks program is the same for the

early and late enrollers. Figure 3 suggests that the trend on peak and shoulder hours before

the Perks program is the same. In Figure A13 we test for the difference of the pre-trend by

each of the week, we find that for peak hour trips, the pre-trend for the two groups are not

statistically significant. For off-peak shoulder hour trips, we find no systematic difference in

the trend for the two groups as well.

We can now estimate the following equation:

yit = β1 ∗Ei ∗ P erkst + σi +µt + εit (3)

where yit measures the number of trips during Peak hour on date t for user i. Ei is an indicator

for individual i being enrolled early from August 23 to September 2, 2016. P erkst is an

16Our analysis is robust to the time period selected for early versus late. We present in Appendix B Table A14
results that define late enrolled users as those enrolled between Oct 15 to Nov 5.
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Figure 3: Early and late enrolled

(a) Peak hour (b) Off-peak shoulder hour

Note: The sample includes trips from July 12, 2016 through September 30, 2016. The figure plots the two week
moving average for off-peak shoulder hour trips (630am-730am and 830-930am) and peak hour trips (730am-
830am) of early enrolled and late enrolled users. The vertical line represents the date August 23, 2016, when
the Perks program started.

indicator for the perks program period. σi is an individual fixed effect and µt is a date fixed

effect. Our null hypothesis is that the difference-in-difference estimator, β1, is equal to zero

in both the peak hour and the off-peak shoulder hour.

Table 2 presents the estimates for equation 3. Columns (1)-(2) report the estimates on the

number of trips per day in the time window of peak hour and off-peak hours respectively. We

find that compared with the late enrolled users, during the first month of the program the

daily number of trips during the peak hour by early enrollers decreases by 0.007; for the off-

peak shoulder hours the daily number of trips by early enrollers increases by 0.015. Column

(3) reports the estimates on the total number of trips in the morning.17 We find that the Perks

program does not increase the total number of trips taken by early enrollers.

To convert these numbers to percentages, we need to know the baseline number of trips. The

baseline number of trips for the late enrollers during September is 0.178 and 0.273 during the

peak and shoulder hours respectively. The DiD estimate of -0.00705 for the peak hour rep-

resents a 4% decrease in peak demand. The DiD estimate of 0.0151 for the off-peak shoulder

hours represents a 5.5% increase in off-peak shoulder hour demand.

17The estimates correspond closely to the estimates in share in Table 1. The share of peak (off-peak) trips
implied among all trips from 5.30am-10.30am is 0.303 (0.535), with reduction of trips of -0.007 (increase of
0.0151), and the share of peak (off-peak) trip during the program would be 0.284 (0.566), which is an implied
change of shares of -0.019 (0.0304).
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Table 2: Average treatment effects by time period: Early vs. late comparison

OLS
Outcome: Number of trips daily

Peak Off-peak shoulder (Either) Total (5.30-10.30am)
(1) (2) (3)

Early enrolled users × Perks Period (β1) -0.0071∗∗ 0.0151∗∗∗ 0.0040
(0.0031) (0.0038) (0.0044)

Observations 600148 600148 600148
Date FE x x x
User FE x x x
Sample mean (before Perks) 0.18 0.31 0.57

Note: The sample includes daily trips from June 1 to October 1, 2016, excluding August 23 to September 2. The
Perks period is defined as dates after September 2. Early enrollers are defined as those who enrolled between
August 23 and September 2. The control group includes those who enrolled between October 1 and November
5, 2016. Standard errors are clustered at the user-week level. The sample means are for late enrolled users in
periods before the Perks period.

To check whether the treatment effect is robust to different specifications, we relax the specific

definition of early versus late enrollment. Instead, we make use of the fact that the activation

time into treatment for each user differs. We estimate the change in travel behavior of each

user before and after their Perks program activation using the following equation:

yit = η1P erksActiveit +µt + σi + εit (4)

where P erksActiveit is an indicator that turns on when user i activated their Perks status on

date t. σi are user fixed effects and µt are time fixed effects. As above, our null hypothesis is

that the difference-in-difference estimator, η1, is equal to zero in both the peak hour and the

off-peak shoulder hours.

Table 3 presents the estimates for equation 4 and shows that the effects of the price subsidies

on peak and off-peak demand are very similar to our staggered specification. We find that

the after activating their Perks user status, peak hour journeys decreased by 0.007 per day for

each user and bonus hour journeys increased by 0.024. The latter result is significantly larger

than that from the early versus late enrolment specification. We also estimate the treatment

effect following De Chaisemartin and d’Haultfoeuille (2020) and Callaway and Sant’Anna

(2021) and report the estimates in Appendix Table A18. Using these approaches does not

alter our estimates, providing more confidence in our identification strategy.
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Table 3: Average treatment effects by time period: staggered activation

OLS
Outcome: Number of daily trips

Peak Off-peak shoulder (Either) Total (5.30-10.30am)
(1) (2) (3)

Active status level -0.00713∗∗∗ 0.0244∗∗∗ 0.0130∗∗∗

(0.00221) (0.00389) (0.00454)
Observations 1426285 1426285 1426285
Date FE x x x
User FE x x x
Sample mean (before Perks) 0.17 0.30 0.56

Note: Sample includes dates from July 1, 2016 through November 6, 2016. Standard errors are clustered by
users and dates.

3.5 Own and cross-price elasticity of demand for peak and off-peak travel

Given our estimates above, we can now estimate the own and cross-price elasticity of demand

for peak and off-peak travel. We estimate η̂ from equation 4 from estimating the demand

effects in our two difference-in-difference specifications. We estimate the causal impact of

changing relative prices on the demand for rides taken per day in peak or off-peak periods

(we denote ηj as the estimates for the equation where the outcome is travel in period j).

We define the relative price of off-peak, p2, as the ratio of price per mile of off-peak to that

of peak. The estimated marginal price of a mile demanded on BART is $0.112 in the control

condition, where there is no difference between peak or off-peak prices. With no price sub-

sidy, this relative price of off-peak is p2 = 0.112
0.112 = 1, and it applies to the control group. For the

treatment group, the price of one mile on BART is reduced by 9.2%. We calculate the average

off-peak shoulder hour trip taken per day by rider before the program as x̄2. Our estimate

on own-price elasticity of off-peak hour equals to ε22 = p2
∆p2

η2
x̄2

Our estimate on cross-price

elasticity of peak hour demand to off-peak hour price equals to ε22 = p2
∆p2

η1
x̄1

. Our estimates

for own-price elasticity of off-peak demand is -0.86, and the cross-price elasticity of peak de-

mand with respect to off-peak price is 0.44.18 We find that this own-price elasticity does not

meaningfully vary by whether we examine consumers who shift to the early off-peak hour as

opposed to the later off-peak hour (see appendix Table A16).

18The program offered 5 points per mile of off-peak trip travelled. Each point has monetary value of
$2.52/1000, therefore the subsidy provides a monetary value of $5*2.52/1000 = 0.0126 per mile in off-peak.
The subsidy also gives 1 mile per peak trip travelled. This implies a new relative price of off-peak as
0.112−0.0126

0.112−0.00252 = 0.9079. Therefore, the relative price change is ∆p2
p2

= −0.0921. From Table 3, the estimate for
η2 is 0.0244. The average off-peak trip per day is x̄2 is 0.307, therefore, ε22 = −0.86 (s.e. = 0.137). As x̄1 = 0.176,
and η1 from Table 3 is -0.00713, ε12 = 0.44 (s.e. = 0.136).
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We find that the cross-price elasticities of demand change in ways that one would think based

on economic theory. For example, the closer the consumer typically travels to the off-peak

hour before the subsidy, the greater their own-price response (see appendix Figure A14).

We also find that the more congested the network, the greater the cross-price elasticity (see

Table A15 in the appendix). For example, we examine the shift for any route exiting at Mont-

gomery Street and Embarcadero (the two most congested stations of the BART network). De-

mand from the east (i.e., eastbound Transbay tube trips that are in the busy corridor) towards

these two stations shift more (change in absolute share) than that from the west (i.e., west-

bound transbay tube trips). While all of these heterogeneous effects go in the direction that

we expect, they are still correlations and not the causal estimates of changing these parame-

ters on the cross-price elasticities of demand. Nevertheless, we can estimate welfare changes

with these different samples in the BART network.

4 Field Experiment

In this section, we estimate the change in peak and off-peak demand from the field exper-

iment. We use these demand estimates to develop a causal estimate of the impact of the

subsidy on welfare in the next section. Here, we provide a brief overview of the field ex-

periment and a discussion of our identification strategy, and then present the key results on

demand. We then compare the estimates with those obtained in experiment 1.

4.1 Identification

The identification of price elasticities in this field experiment comes from different variation

than in the natural experiment. First, we control the assignment mechanism of price changes

in this field experiment, whereas we did not control assignment in the natural experiment.

The clear advantage of this experiment was the ability to randomize some BART customers

into the control group where prices did not change and some BART customers into the treat-

ment group where prices were changed.

Second, in contrast to the natural experiment, which focused on generally shifting riders from

peak (730am-830am) to off-peak (630am-730am and 830am-930am) travel, this field experi-

ment focuses on shifting riders to less crowded trains in time periods adjacent to their normal

commute. For example, a rider may receive a subsidy to shift their travel from their usual time

period to an adjacent twenty minute interval, when a less crowded train is available at their

departing station.
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Third, in comparison with the natural experiment, this field experiment differed in terms

of how price changes were determined. Prices were customized based on the individual’s

previous BART demand and location. Prices were also updated at least monthly based on

changes in congestion levels and other factors. In contrast, the natural experiment offered the

same incentives to all participants for the duration of the pilot.19

Overall, the general size of the incentives, the way they are paid to consumers, and the type

and selection of consumers are very similar across both experiments. The price changes

started in mid-December 2018 and ended in March 2019. We could not examine any per-

sistence in travel behavior in this experiment as those in the control group received offers in

April 2019. Customers registered for the price subsidies via BART’s website and the BART

Official Mobile Application.

In terms of defining our field experiment, we class it as a hybrid between a natural and a

framed field experiment, as defined by Harrison and List (2004). While we have selection of

people into the experimental sample who wanted some incentives, people did not know that

they were part of an experiment and did not know that they would get price subsidies for

changing their commute time.20 Therefore, we believe that there is little selection on peak

and off-peak price elasticities due to the opaque advertising in the field experiment about

what incentives would be given.

4.2 Recruitment

Participants were recruited from two sources. First, twelve people employed by BART dis-

tributed flyers advertising that people could sign up for the program at the Embarcadero,

Montgomery and Civic Center stations in downtown San Francisco from 8:00 – 9:30 AM on

December 13th, 2018, These three stations were chosen because they are the most congested

stations in downtown San Francisco. Second, a subset of those who participated in Perks

natural experiment opted in to receiving notifications from BART about future incentive pro-

grams. We analyzed the travel histories of these individuals, and identified customers who

made at least 50 percent of their BART trips from downtown Embarcadero, Montgomery, or

Civic Center stations. An email invitation to join the Perks Phase II program was sent to a

random subset of qualifying individuals. Emails were sent in batches between November 20

and December 12, 2018. The overall recruitment led to 1900 customers, of which 63% were

recruited through flyers and 36% through email. See appendix Table A19 for the summary

statistics for our sample.

19Price subsidies were paid out through gift cards as opposed to PayPal (as in the natural experiment).
20The program was advertised as giving monetary payments for completing surveys and traveling on the

BART on evening and weekends. See the recruitment flyer in Figure A15.
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Figure 4: View of the incentives offer on the app

4.3 Price changes

Experimental subjects in the treatment group were offered a price reduction of around 25%

per ride in an adjacent time window to their current commute time. The price subsidy had

two components: a random term and a deterministic term. The latter was based on how far

the time interval was from their usual departure time. The price changes were targeted to

each customer’s frequently-visited station at a specific 20-minute time window during the

morning and/or evening commute period. The time window where the subsidy was offered

was up to 40 minutes before or after their typical entry time, and was optimized to reduce

overall crowding on the BART network. Users could receive up to four commute-related point

offers (shift early AM, shift late AM, shift early PM, shift late PM).

The price subsidies were determined by a machine learning algorithm that drew upon a par-

ticipant’s travel history and a predictive model for crowding provided by the transit company

Metropia. Figure 6 provides an example of an offer to shift commuting time. The price sub-

sidies were offered in terms of points that were to be redeemed by the consumer.

To identify the correct time windows to reduce overall BART congestion, the Metropia algo-

rithm identified a user’s typical departure time and then calculated the predicted crowding

reduction benefit of shifting this user to one of the adjacent time periods. If no benefit would

occur from shifting the user, then no offer would be shown. Similarly, no offer was shown

if achieving the crowding reduction would require the user to make shifts beyond 40 min-

20

https://www.metropia.com/


utes from their average departure time.21 The consumer was emailed the price change at the

beginning of the month and the price change was constant for one month, so we are estimat-

ing one-month elasticities in this field experiment (in comparison with six month elasticities

from the natural experiment). During the course of the field experiment, about $23,000 in

peak shifting price subsidies were given to BART consumers.

4.4 Results

Our analysis of the field experiment consists of two parts. First, we provide the overall treat-

ment effects of the incentives on shifting ride demand later or earlier. Second, we provide a

more precise estimate of the welfare effects of shifting travel into or out of specific 20 minute

time periods.

To estimate the average treatment effect of the price subsidies for shifting demand earlier or

later than the usual travel time, we employ a linear regression of whether a rider travels at

the subsidized time period based on the subsidy they receive as the dependent variable.

For the shift early subsidies, we estimate the following equation:

ySEit = α + βT SEit + εit (5)

Here, ySEit is an indicator variable for rider i who receives the shift early subsidy and travels

at the subsidized time on date t. T SEit is an indicator variable for rider i in the treated group

who receives the subsidy (while it is zero for control group riders who receive a hypothetical

subsidy). The parameter β captures the overall effect of the shift early subsidies on travel at

the subsidized time.

Similarly, we define another indicator variable uSEit to capture whether a rider received a shift

early offer but still travels at their usual travel time on date t. We estimate the following

equation:

uSEit = γ + δT SEit +µit (6)

Here, uSEit represents the indicator variable for rider i who received a shift early offer but still

travels at their usual time on date t. T SEit is the treatment indicator, indicating whether rider

i received a shift early offer on date t. The parameter δ measures the average effect of the

subsidy in reducing travel at the usual time for riders.

21This interval was based on feedback from user focus groups, which found that individuals did not wish to
make large shifts in their commute
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We follow a similar approach to estimate the effects of the shift late subsidies, using indicator

variables ySLit and uSLit to capture riders traveling at the subsidized time and their usual time,

respectively.

In Figure 5, we present the likelihood of riders traveling at their usual time or the subsidized

time, comparing the treatment and control groups. The results show a clear effect of the

subsidies in shifting riders from their usual travel time to the subsidized time. Specifically,

for the shift early subsidies, the estimated equation (5) suggests that the subsidies increased

the probability of riders traveling at the subsidized time (compared to the control group) by

0.034 (s.e. 0.009), or 3.4%. Equation (6) suggests that the subsidies reduced the probability

of riders traveling at their usual time by 0.035 (s.e. 0.016), or 3.5%.

For the subsidies that shift riders to a later time, the analysis indicates an increase in the

probability of riders traveling at the subsidized time by 0.022 (s.e. 0.008), or 2.2%, and a

reduction in the probability of riders traveling at their usual time by 0.046 (s.e. 0.017), or

4.6%. These estimates demonstrate that the subsidies successfully shifted transit demand

from congested time periods to non-congested time periods, resulting in meaningful and

significant changes in travel behavior.

Our second part of analysis of the field experiment leverages the detailed part of the ex-

periment, where we have varying off-peak and peak time windows for each consumer, so a

flexible specification is required to account for this. We will also turn these estimates into

welfare calculations. We estimate the following equation:

ykit = βk1Sk + βk2S−k + δkjt + δ−kjt +µiaAt +µid +µiq +γt + εit (7)

where ykit is the number of trips that start in time period k by individual i on date t. Our

sample includes both the treatment and control groups, and both time periods (before and

during the experiment). Sk is the monetary value of the points subsidy offered to individual i

for time period k, regardless of the "usual travel time" of individual i (e.g., if k is 8am, Sk is any

subsidy for 8am, whether it is for someone who usually travels at 7.20am, 7.40am, 8.20am

or 8.40am). Sk = 0 for the treated group in the pre-treatment period, for the control group,

and for those who are not offered a subsidy for time period k. βk1 is therefore the own-price

demand effect for time period k.

S−k is the value of the subsidy received by individual i for any time period outside of time

period k, targeted for someone who usually travels at time k. It is the value of the subsidy

offered to individual i who usually travels at time period k that may shift them away from

time period k (e.g., if k is 8am, S−k are subsidies for 8.20am/8.40am/7.40am/7.20am that

shift people away from 8am). For individuals who do not normally travel in time k, S−k = 0
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Figure 5: Field Experiment: Change in demand for subsidized time and usual travel time

(a) Travel at usual more congested time (b) Travel at subsidized less congested time

Note: The figure presents the share of days riders travelling at their usual time (Panel (a)), and the subsidized
time (Panel (b)), by the treatment and control riders, and by the period they receive shift early or shift late
subsidies. Each bar represents the share of days the outcome (travelling at the usual time or the subsidized
time) takes the value of one for the respective group. The red bar(s) represent the average outcome for treated
riders and the white bar(s) represent that outcome for the control riders for the respective groups. The p-values
above the pairs of bars indicates the statistical significance for the differences between the treated and control
riders in the outcome variable, estimated by the regression equations (the treatment coefficients are 0.0336
(0.00928), 0.0217 (0.0082), -0.0353 (0.0163) and -0.0458 (0.0171) respectively for the shift early usual time,
shift late usual time, shift early subsidized time and shift late subsidized time). Standard errors are clustered
at the rider level and are in parentheses. The sample includes dates when riders receive a shift early (or late)
offer or a hypothetical shift early (or late) offer for the control group riders. The experimental period begins
December 2018 and goes through March 2019.
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for any subsidy they were offered. k.22 βk2 is therefore the generic cross-price effect on the

demand for time period k when a price subsidy was offered in time periods other than k.

δkjt is a time-varying fixed effect for the individuals who normally travel in time j and have

received a subsidy for time period k (i.e., those who were actually chosen by the Metropia

machine learning algorithm to travel on a less congested train within a 40 minute window

of their usual travel time). Each type of rider, jk, includes riders from the treated group

and the control group. For the treated group it is defined by the price subsidy offered (those

who normally travel in time j who received a subsidy for time period k), and for the control

group, it is defined using the hypothetical offer that would have been given to the control

group if they were in the treatment group (those who normally travel in time j who received

a hypothetical subsidy for time period k).23 The fixed effects therefore control for any time-

varying factors that affect the travel pattern of similar types of riders in the treatment and

control group. For the control group, Sk = 0. Hence, the identification of Sk comes from a

comparison of riders of similar "types" as defined by Metropia offers in both the treatment

and control groups.24

δ−kjt is the time-varying fixed effect for the individuals who normally travel in time k and

were offered a subsidy for time period j. Each type of rider, jk, includes both riders from the

treated and control groups. For the control group, S−k = 0. Hence, our identification for S−k
comes from a comparison of riders of similar type in the treatment and control groups that

were identified as having similar offers.

µid is a fixed effect for individual-day of the week. It controls for individual travel pattern

on each day of the week. µiq is an individual*year quarter fixed effect, which allows for an

individual’s travel pattern to change in each quarter. µia is an individual fixed effect that

takes a value of one for the weeks beginning November 12 and 19, 2018, in which the air

quality in San Francisco was a historically poor level due to wildfires. It controls for any

idiosyncratic response of each individual during those two weeks. γt is the date fixed effect.

Our null hypotheses are that the price subsidy in the targeted time period has a zero impact

on demand and that the cross-price effect on demand is zero.

22Specifically, let Skm be the subsidy that a targeted traveler who usually travels in time period k and subsidize
travel in time period m. As in our setup the subsidy shift traveller earlier and later by 20 or 40 minutes interval,
if we index the time interval according to the order of time of the day, Skm = 0 if |k −m| > 2. S−k is defined as
S−k = Skk−2 + Skk−1 + Skk+1 + +Skk+2. As each traveller has a specific usual travel time k, and receive subsidy for only
one time period other than k at each period t, it is equivalent to S−k = max{Sk−2,Sk−1,Sk+1,Sk+2}.

23The algorithm created hypothetical offers for all consumers, but we only gave the offers to the treated group
and the control group was unaware of such offers.

24Equivalently, these are the fixed effect coefficients for a time invariant indicator Dkj interacted with time
dummies, where the indicator Dkj is 1 if the rider i in the treatment group has ever received subsidy of type Skj
in the experiment period, or if the rider i from the control group has ever received a hypothetical subsidy of
type Skj .
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Figure 6: Field Experiment: Demand Parameter Estimates

(a) Change in subsidized time (b) Change in usual time

Note: The figure plots the estimates of equation 7. The sample include participants in the field experiment.
Panel (a) plots the estimate for the effect of a small change in the subsidy at time t on the demand at time t.
Panel (b) plots the estimate for the effect of a small change in subsidy for time t, where the usual travel time is
time j, on the demand at time j. Standard errors are robust to autocorrelation of 14 days. The average journey
price in the control group is $3.99.

Figure 6 plots the demand estimates, βk1, for each of the time periods in equation 7. Panel (a)

plots the demand change in the time period that subsidies were offered. We find, in general,

that the estimates for βs are positive, meaningful, and statistically significant, suggesting

riders are responsive to price at relatively narrow time intervals (as compared to the wider

window in experiment 1). The time periods with the greatest demand shifts toward that

period are 740am-8am, 8am-820am, 840am-9am, and 1020am-1040am. The average own-

price elasticity of demand from peak to off-peak is -.939 . However, there are some time

periods where people are less elastic in their demand, such as before 740am and after 9am

(excluding the 1020am-1040am time period).

Panel (b) plots βk2 of equation 7, which is the change in the usual travel time for the consumer.

In general, we find negative and statistically significant coefficients, suggesting that riders

were reducing travel in their usual time and shifted into the subsidized time period (panel

(a)). The average cross-price elasticity of demand from peak to off-peak is .543 .25 It seems

25The cross-price elasticity for each type of treatment subsidy (a subsidy for those who normally travel in

period j ′ receiving a subsidy for time period k′) is calculated as εj ′k′ =
dxj′

dS ′−j
∗ p
x′j

where xj ′ is the average travel (in

number of trips) for those who normally travel in time period j ′ who received subsidy in time period k′ ,
dxj′
dS−j′

is the estimate of the coefficient for S−k in equation (7) for the time period k = j ′ , and p = 3.99. The average
elasticity is arithmetic average of the elasticities εj ′k′all the treatment subsidies (include both shifting early and
late).
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that consumers are more elastic between 7am and 10am, but less elastic before 7am and after

10am.

From both panels in Figure 6, it is clear that elasticities vary across time periods. This vari-

ation in elasticities results from a combination of individual preferences and BART system

effects. For example, the own-price and cross-price elasticity at 8-820am are -1.45 and 0.30

respectively.

For those individuals who did not switch at any time period, we sent them a survey asking

them why they did not switch earlier or later.26 We found that for those who would not

switch earlier, the most chosen reasons were personal preference (55%) and employer would

not allow it (29%), and that for those who would not switch later, the most chosen reasons

were also personal preference (41%) and employer would not allow it (40%). This suggests

possible unobserved reasons for not switching demand to an earlier or later time period.

The previous analysis allows us to compare the elasticities from the field experiment to those

from the natural experiment. The own-price elasticity of demand and cross-price elasticity

of demand from the natural experiment were -0.86 (se = .14) and 0.44 (se = .14) respectively.

Given the respective estimates from the field experiment are -0.94 and 0.54, we cannot reject

that the estimates from both experiments are equal for both the own-price elasticity and the

cross price elasticity.

5 Welfare analysis

In this section we use the theory presented in section 2 and estimates of demand from the

natural and field experiments to derive the change in welfare. We also present an alternative

welfare calculation using the marginal value of public funds (MVPF).

We present an overview of the key data used in the calculation in section 5.1. We then present

welfare estimates for the natural experiment in section 5.2. We extend this analysis to allow

for differences in demand across groups (in this case, customers that received or did not

receive a subsidy) in section 5.2.2. Finally we estimate the MVPFs for the natural experiment

in section 5.3 and the field experiment in section 5.4.

The welfare analysis yields several novel findings. First, providing the off-peak subsidy for

BART users improves welfare both when we use our welfare model and when we compute

the MVPF (Finkelstein and Hendren, 2020). We find that the average net benefits per dollar

of direct subsidy is $0.36 in the base case. We also show that the MVPF in this case is 1.6.

This means that for each additional dollar of net cost to the government, the marginal benefit

26Survey implementation and results can be found at BART Perks Phase II Evaluation Report (2019).
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to all parties is $1.60.27 The increase in welfare from the subsidy results from an increase in

overall ridership and a shift in ridership from the peak to the off-peak period, which reduces

congestion.

Second, allowing for riders to take account of how other riders respond to congestion (i.e.,
the case of endogenous congestion) also leads to an increase in welfare, but less of an increase

than for the case of exogenous congestion. The reason for a higher level of welfare in the case

of exogenous congestion is that fewer people ride in the peak period (which yields a smaller

welfare loss), and more people ride in the off-peak period (which yields a larger welfare gain).

Third, based on the natural experiment, targeting particularly congested routes can increase

average per capita welfare. We estimate that per capita welfare gains increase by 15% when

targeting subsidies to a highly congested route—the Transbay route.

Fourth, the optimal subsidy may be substantially higher than the subsidy offered in the natu-

ral experiment. We estimate that the optimal subsidy could be about eight times higher than

the subsidy that was offered, and that welfare could be about four times higher. As we note

below, the particular numerical results are likely to be sensitive to our assumption of linearity

of demand.

Finally, using the natural field experiment, we show that the targeting of subsidies to time

periods that are relatively narrow can increase welfare, but does not always do so. Our ex-

periments suggest that such targeting may require a substantial amount of information on

demand to increase the likelihood that welfare will actually improve with a change in the

level of the subsidy.

5.1 Natural Experiment: Data

We analyze the welfare effect of experiment 1 using equation (1) in section . We consider both

the case of exogenous and endogenous congestion. The key parameters used in equation (1)

in the “base case” are presented in Table 4.

The expressions for dx1
ds and dx2

ds (the impact of a change in the subsidy on peak and off-peak

demand) are obtained from Section 3 for the case of exogenous congestion.28 These quanti-

ties are measured in terms of the change in the average number of trips per weekday with a

change in the subsidy. Price is obtained by averaging the fare for all BART trips in our sam-

ple, measured in dollars per trip. This includes all trips in the morning from 5am to noon,

excluding those that begin or end in the airport because they have a different fare schedule.

27We compute all MVPFs based on the assumption that that the initial subsidy is zero.
28For endogenous congestion estimates, see the discussion in appendix A.6 and A.16.
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Table 4: Key parameters used in our base case welfare analysis

Parameter Exogenous
congestion

Endogenous
congestion

Percent Change

dx1
ds -0.0194 -0.0166 -14.68
dx2
ds 0.0664 0.0625 -5.91
p $3.99 $3.99 -
s′ $0.25 $0.25 -
MPC $1.89 $1.89 -
MEC2 0 0 -
MSC1 $3.22 $3.22 -
MSC2 $1.89 $1.89 -

Notes: Demand decreases in the peak period and increases in the off-peak period with the introduction of the
subsidy. The magnitude of the decrease is smaller with endogenous congestion in the peak period, and the
magnitude of the increase is smaller with endogenous congestion in the off-peak period. See discussion in the
text for sources of the parameter estimates. Demand is measured as the average number of trips taken per
weekday for the average rider.

The subsidy, s′, is taken from the actual experiment and equals $0.25 per trip on average.

MPC refers to marginal private cost of a BART trip. MSC1 and MSC2 refer to the marginal

social cost per trip in the peak and off-peak period, respectively.

The marginal private cost in each period is assumed to be the same in both periods. We

estimate the MPC from BART’s financial report from 2006-2016. We follow Winston and

Maheshri (2007), and regress yearly total operating cost (adjusted for inflation) on yearly

annual ridership to obtain the marginal private cost. In addition, we assume that there is no

externality in the off-peak period, so the marginal external cost in the period, MEC2, equals

zero. This implies that the marginal social cost in the off-peak period equals the marginal

private cost.

To obtain the marginal social cost in the peak period, we need an estimate of marginal exter-

nal cost (MEC1) to add to the MPC. The estimate of MEC1 is based on crowding, delay and

the value of time. Our analysis assumes that external costs are proportional to the value of

time for both crowding and delay (see Haywood and Koning (2015)). We also assume that

MEC1 is constant for given values of the value of time, congestion and delay. We assume the

value of time is half the hourly wage (Small, 2012), also do a sensitivity analysis with 75% of

the wage rate (Goldszmidt et al., 2020). Congestion and delay are derived from BART data

(see appendix A.4 for details of this calculation). Using this approach, we find that MEC1 is

$1.33 per peak hour trip.

Table 4 shows that the assumption about the response to congestion matters for the demand
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response to the subsidy in both the peak and off-peak periods. Even though peak travel

declines with the introduction of the subsidy in both cases, the decline is about 15% less with

endogenous congestion than with exogenous congestion. More people travel during the peak

period when they take into account how others will respond to congestion. Similarly, fewer

people travel during the off-peak period with endogenous congestion (see the discussion in

section ?? and Appendix A.6 for details of the empirical estimation). In both the exogenous

case and the endogenous case, the subsidy increases overall ridership. The change in overall

ridership, measured by dx1
ds + dx2

ds , is 0.047 trips per day in the exogenous case and 0.046 trips

per day in the endogenous case. Thus, the endogenous case has a two percent lower increase

in overall ridership than the exogenous case.

Table 4 also suggests that MSC1 and MSC2 are both less than the price in the base case.

This means that there is under-consumption of rides relative to the first best in both periods

(where price would be set equal to the marginal social cost). This relationship helps explain

some of our welfare findings. We also consider a case for a crowded corridor where MSC2 is

less than the price.29

5.2 Natural Experiment: Welfare estimates

5.2.1 Estimates for the Experimental Sample

We consider the welfare impacts of two subsidies in detail: one is a general subsidy for all

riders in the experiment 1, and the second is a targeted subsidy for riders on what we call

the Transbay route. We define the Transbay route to include trains that lead to the Transbay

Corridor30, and also trains that travel on the Transbay route westbound. This route is in

the top 10 percent of congested routes for BART in the morning.31 We conclude by briefly

considering the welfare effects of an optimal subsidy.

Table 5 presents the main welfare results for the base case subsidy and a targeted subsidy

for the Transbay route. First, we consider the base case. We measure welfare in dollars per

person per weekday. Because the price is above the marginal social cost in both periods in the

base case, an increase (decrease) in ridership in a particular period will increase (decrease)

welfare in that period (see equation (1)). Ridership decreases in the peak period as a result of

29The average fare exceeding the marginal social cost may be unusual in rapid transit systems. For example,
Parry and Small (2009) find that the marginal private cost, and thus the marginal social cost, exceeds price for
rail in Washington D.C., Los Angeles and London. Winston and Maheshri (2007) find similar results.

30See “Transbay Corridor Core Capacity Program Train Control Modernization Project”, BART.
31This includes routes that depart or arrive at stations: West Oakland, Embarcadero, Bay Fair, San Lean-

dro, Coliseum, Fruitvale, Lake Merritt, Orinda, Rockridge, MacArthur, 19th St/Oakland, 12th St/Oakland City
Centre, and Ashby, towards the Transbay tube direction.
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the subsidy, and there is a decline in welfare (see row 1). Ridership increases in the off-peak

period, and there is an increase in welfare (see row 2).

Table 5: Welfare impacts for the base case and a targeted subsidy

Base case Targeted subsidy
Parameter Exogenous

conges-
tion

Endogenous
conges-
tion

Percent
Change

Exogenous
conges-
tion

Endogenous
conges-
tion

Percent
Change

(1) Welfare change associated
with peak travel change

-0.0037 -0.0032 -14.7 0.0006 0.0005 -14.7

(2) Welfare change associ-
ated with off-peak travel
change

0.0328 0.0309 -5.9 0.0328 0.0309 -5.9

(3) Total Welfare change 0.0291 0.0277 -4.8 0.0334 0.0314 -6.1

Notes: Welfare is measured in dollars per person per weekday. Overall welfare increases with the subsidy. The
decline in ridership in the peak period reduces welfare, and the increase in ridership in the off-peak period
increases welfare. See text for details. The total welfare change is calculated from equation (1).

The overall welfare effect for the base case is the combination of the welfare loss associated

with reduced peak travel and the welfare gain associated with more off-peak travel. For both

the exogenous and the endogenous congestion cases, this net gain is positive. A subsidy of

$0.25 per trip in the off-peak period results in a net welfare gain of about $0.03 per rider per

day for the exogenous congestion case (row 3 of Table 5).

Welfare in the endogenous case declines by 4.8% compared with the exogenous case because

of differences in demand response (see row 3 of the table). This percentage change masks

more significant differences in actual travel patterns in the peak and off-peak periods (see the

percentage change in row 1 and row 2 for the base case in Table 5).

The welfare analysis for the Transbay route is similar to the base case qualitatively. The

main point of this analysis is to illustrate that there could be potential gains from targeting.

The average net benefits are about 15% higher when targeting Transbay riders under the

assumption of exogenous congestion.32

Average net benefits per dollar of direct subsidy, which sometimes is used as a measure of wel-

fare by decision makers, is also higher.33 This measure ignores the fiscal externality, which is

discussed below in estimating the MVPF. We estimate average net benefits by taking the total

welfare change and dividing by the average subsidy expenditure per person per weekday.34

32Take the average welfare gain of .0334 for Transbay and divide by .0291 for the base case. Note that this
percentage is higher in the endogenous case.

33The measure is similar to that used in the tax literature that estimates the welfare change per dollar of tax
revenue. See, e.g., Saez, Slemrod and Giertz (2012).

34See appendix A.10 for details.
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For the base case, we find that an essential difference between the analysis of the Transbay

route and our analysis of the base case is the level of congestion, which is higher. This, in

turn, increases the MSC associated with the Transbay route during the peak period. The av-

erage peak period congestion on the Transbay route is 108 passengers per car, while it is 57

passengers per car for all other routes.35 We also find that delay is more severe on the Trans-

bay route than other routes. Using equation (1), we obtain a welfare estimate of providing a

subsidy that exclusively focuses on the Transbay route during the morning (see appendix A.8

for details of the calculation).

For the Transbay route, the marginal social cost per peak period trip is $4.12. This is higher

than the marginal social cost when we use the average level of congestion across all routes

($3.22). The welfare effect of a $0.25 subsidy for an off-peak trip is $0.033 per person per day

in the case of exogenous congestion, and $0.031 in the case of endogenous congestion. These

welfare estimates are greater than the welfare effect effects estimated in the base case. The

difference is due to the higher marginal social cost in the peak period for the Transbay route.

With additional assumptions about the functional form of demand, we can compute the op-

timal subsidy using equation (A5).36 We provide details of this computation in appendix A7.

The analysis relies on the assumption that demand is linear over a wide range, which may not

be the case. With this caveat in mind, we find that the optimal subsidy is about eight times

higher than the actual subsidy ($1.87 in the exogenous case and $1.90 in the endogenous case

versus an actual subsidy of $0.25 per trip). Total welfare is about the same for the exogenous

and endogenous cases, but is about four times higher than welfare associated with the actual

subsidy ($.12 vs. $.03). The reason that total welfare is similar in the endogenous and exoge-

nous cases is because the optimal subsidy is slightly higher in the endogenous case, but the

overall demand increase (dx1
ds + dx2

ds ) is slightly lower. These changes tend to cancel each other

out (see equation 1) (see appendix A7 for details).

We also considered what would happen with changes in the shape of the MEC function. In

particular, we allow for the MEC function for peak period travel to be an increasing linear

and non-linear function of density, e, instead of a constant function of e. Our main conclusion

is that in this particular example, the results do no change much in moving from a constant

MEC function to a linear MEC function or in moving from a constant MEC function to a

quadratic MEC function for the peak period. For example, the total welfare change for the

exogenous case is about .029 per person per day with a constant MEC function, .029 for a

35The units of the congestion measure used in our calculation is passengers per square meter in an average
car. See appendix A.7 for details.

36We consider the optimal subsidy for the off-peak market. This is second-best because prices do not equal
the marginal social cost in both markets. We could in principle compute optimal subsidies in both markets.
However, to compute the welfare change, we would also need an estimate of how demand changes with price in
the peak period, which we do not have.
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linear MEC function and .028 for a quadratic MEC function. The results are also similar for

endogenous congestion (.028, .028 and .027). Overall welfare decreases between exogenous

and endogenous congestion are also similar, on the order of 5%. We discuss our methodology

and present the empirical results in appendix A.12.

The preceding analysis of welfare changes in Table 5 does not explicitly consider how changes

in other modes of travel could affect our calculation. In Appendix A.10, we present a calcula-

tion of how intermodal substitution could affect the welfare from the subsidy. In general, we

argue that welfare would improve because of decreases in emissions and reduced congestion

that are not priced in the market, supporting previous research by Anderson (2014). As an

illustrative example, we assume that the overall miles traveled remains constant, but that the

increase in the use of BART as a result of the subsidy is accounted for by a reduction in car

travel. We compute the benefits associated with these improvements for the case in which the

subsidy includes all riders, and all riders are assumed to respond similarly to those in the ex-

periment. The estimated benefits include local pollution reduction benefits of $0.07 million

per year and global pollution benefits associated with CO2 reductions of $0.25 million per

year, for a total of about $0.32 million per year. These pollution reduction benefits may be

compared with the benefits of the subsidy from the experiment, which are about $2 million

per year. We derive this estimate by multiplying the average benefit per person per weekday

by the number of weekdays per year by the number of BART riders. See Appendix A.10 for

details of the calculation.37.

5.2.2 Estimates for the BART Network

We extend our theoretical framework to allow us to estimate the welfare benefits when riders

may differ in their responsiveness to a subsidy. We do this to develop a more realistic welfare

estimates when data are available.

Formally, we model two types of riders with different demand characteristics. We allow for

differences in demand characteristics because people participating in the experiment may, for

example, be more sensitive to price changes on average than those who do not. In appendix

A.17, we show that this can lead to a straightforward modification of equation 1, where the

average per capita welfare change for all riders depends on the demand characteristics of both

groups and their respective sizes. For example, when demand characteristics are the same for

the two groups, average per capita welfare benefits from the subsidy are the same.

To empirically implement this framework, we first explored how the sample in the natural

37We do not analyze how the introduction of the BART network affects pollution. Previous research suggests
this could be important (Gendron-Carrier et al., 2022).
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experiment differed from the general BART population. As discussed below, the sample does

not appear to be that different. Nonetheless, because there may be unobserved differences

between populations, we present a sensitivity analysis to assess how welfare could change if

the sample under study was not representative of the general population.

A key question is how participants in the natural experiment may differ from the general pop-

ulation that uses BART. We relied on a survey administered by BART to address this question.

Our main finding is that, based on the survey, the observable characteristics of our sample

and the BART customer sample are no different. For instance, the percent of individuals who

have household income less than $50,000 in our natural experiment sample was 13%, versus

14% for all those using BART who commute downtown. The percent of individuals who are

BIPOC in the natural experiment sample was 57%, versus 64% for all those using BART who

commute downtown. Thus, in terms of external validity on observables, the sample is not

that different from all those using BART.

However, there may be unobserved demand differences between those who signed up to the

natural experiment and the rest of the BART network. To address this issue, we compared our

base case results with a case in which the rest of the BART network is assumed to be one-half

as responsive to the price subsidy as participant in the experiment. In the base case, recall the

that average net benefit per dollar of direct subsidy was $0.36. If the demand by those not in

the experiment is one-half that of people in the experiment, this measure drops by about 46%

to $0.2. The reason for the large drop is that other people not in the experiment represent

about 93.5 percent of the entire network, and thus have are the major factor driving the

per capita welfare calculation. This analysis highlights the need to understand the demand

characteristics of different groups of riders to develop a more precise estimate of the welfare

impacts of a large-scale subsidy.

5.3 Natural Experiment: MVPF estimates

The preceding section used a measure of welfare based on our welfare model. It assumes that

the method of financing the subsidy is a lump sum tax. Net benefits are computed in terms

of dollars per person per week day. In contrast, the MVPF calculation for the subsidy is silent

on the source of the revenues that fund the intervention.38

The MVPF benefits measure is given in terms of the change in net benefits per net additional

dollar of government cost. It is, thus, not a welfare measure in the sense of providing an

estimate of net benefits (i.e., benefit minus costs). However, if we assume that the net costs to

38This source can be considered in a separate MVPF – for example, the MVPF of raising a dollar of funds
through an income tax on a particular group.
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the government are funded by a lump sum tax, it is possible to show that the MVPF measure

and the measure for welfare we obtain in our basic model are related.39 The intuition is that

a lump sum tax converts the net cost to the government into a cost to society.

Equation 8 describes our MVPF calculation.

MVPF =
Inframarginal benefit from the subsidy + Change in congestion benefits

Change in direct subsidy cost + Change in the transfer to BART
(8)

In our application, the benefit to BART users is the numerator and the net cost to the govern-

ment of the subsidy is the denominator. The numerator consists of two terms: inframarginal

benefits of the subsidy for those off-peak users who did not switch from the peak, and the

benefits to all peak travelers from reduced congestion.40 The denominator also consists of

two terms: the direct subsidy costs that are paid to BART consumers, and the change in the

transfer to BART resulting from the change in ridership.

The two terms in the numerator are positive. The subsidy provides benefits to those who do

not change their usage patterns and there are benefits (in terms of reduced congestion) for

those who continue to travel during the peak period. The two terms in the denominator have

different signs. The direct subsidy cost to the government increases as a result of introducing

the subsidy; however, in our particular example, discussed in more detail below, BART’s rev-

enues profits actually increase as a result of the subsidy, which means that the transfer from

the government to BART, which is needed to cover BART’s losses actually decreases. Thus,

the second expression in the numerator is negative. This situation arises because ridership in-

creases as a result of the intervention, and price exceeds marginal cost for each ride. BART’s

profits thus increase from the increased ridership, and the transfer needed by the government

to keep BART’s profits at a particular level decreases.

Table 6 shows the MVPF calculation for the cases of exogenous and endogenous congestion.

In both cases the MVPF is close to 1.6. This means that for each additional dollar of net cost

to the government, the marginal benefit to all parties is $1.60. The 95% confidence inter-

val for the MVPF, obtained by bootstrapping both the peak and off-peak demand response

estimations, ranges from about 1.4 to 1.7 for both cases.41

There are two general points to be made about the MVPF approach based on our example.

39They are related in the sense that the welfare measure dW (s)
ds is the same using both approaches under this

assumption. See appendix A.15 for details. A key feature common to both approaches is their reliance on the
envelope theorem.

40We assume the net benefits to those who shift from peak to off-peak travel as a result of the subsidy are
negligible or zero because of the envelope theorem, and do not include this term in net benefits. If we included
some part of these benefits, it would have the effect of increasing the MVPF.

41If we assume riders not in the experiment were half as sensitive to the subsidy as those in the experiment
then the MVPF drops from 1.6 to 1.26.
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Table 6: MVPF’s for the subsidy

Exogenous Congestion Endogenous Congestion
Numerator
1. Inframarginal benefits 0.307 0.307
2. Congestion benefits 0.0258 0.0220
Numerator total 0.3328 0.329

Denominator
1. Change in direct sub-
sidy cost

0.307 0.307

2. "Change in transfer to
BART"

-0.0987 -0.0965

Denominator Total 0.2083 0.211

MVPF = Numera-
tor/Denominator and
error bounds

1.598 [1.479, 1.716] 1.563 [1.444, 1.681]

Notes: The MVPF is computed for a subsidy of $1 per trip in the off-peak period using equation (8). The VOT
is set equal to 50% of the wage rate. The 95% confidence interval is calculated by bootstrapping the estimation
for the demand responses with 100 replications. Details of the calculation are provided in appendix A.7.

First, the subsidy in this case involves more than simply the direct subsidy to passengers.

Because we are dealing with a regulated entity, one must also consider the impact of the

subsidy on the revenues needed to support the regulated entity – in this case, BART. This is a

feature that is endemic to many regulatory activities, where prices depart from marginal cost

(e.g., Hahn and Metcalfe (2021)).

Second, more work needs to be done in this area to rank various subsidies and pricing in-

terventions using the MVPF framework in the regulatory domain, and connecting them to

tax policies that might be used to assess their effectiveness. That will allow us to make more

informed assessments of the actual welfare impacts of policies. A review of Hendren (2020)

reveals the MVPFs we estimate are comparable to, and in some cases higher than, many edu-

cational and labor policy interventions.42

5.4 Field Experiment: MVPF Estimates

This section analyzes the welfare effect of the targeted subsidies used in experiment 2. In the

interest of brevity, we focus on results using the MVPF here, and present results on the net

42A higher MVPF does not necessarily imply the policy is "better." One would need to make further assump-
tions about equity weights to compare policies.
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welfare benefits in the appendix. The results are qualitatively similar.43

There are two main results. First, targeting results in many MVPFs that exceed one (meaning

the increase in willingness to pay exceeds the net cost to the government), but in some that

do not. This is because targeting parameters are set without reference to changes in demand,

and these changes are critical for welfare. Second, we explain the subtle relationship between

a change in the value of time and a change in welfare. The key point is that the value of time

interacts with the demand changes in both periods to affect the change in welfare. As a result,

the impact of a change in the VOT on economic welfare cannot be signed apriori.

In experiment 2, thirty groups receive a subsidy in 12 time periods that are 20 minutes long.

The subsidies are to encourage travel that is 20 minutes or 40 minutes away from the rider’s

usual travel period of 20 minutes. A group is defined by their subsidized time period and

their usual period of travel. Because of data limitations, we assume that the targeted subsidy

for a specific group only affects travel in the targeted period and the usual travel time period.

We identify each targeted group, j, by the usual travel interval and the subsidized interval,

which can be 20 or 40 minutes before or after the usual travel time. For example, one group

is riders who usually travel from 8:20 am to 8:40 am and receive a subsidy to travel between

8.40 am and 9 am.

We focus on evaluating the welfare impact of the subsidies for experiment 2 using the MVPF.

This is because each of the targeting subsidies involves a small fraction of riders among all

BART users. We consider the case in which the riders take congestion as exogenous in their

decision making. In this case, the MVPF provides a simple measure that allows us to rank the

welfare impact of each of the subsidies.44

In calculating the MVPF for subsidies in experiment 2, we allow for the possibility that the

marginal external cost is positive in the targeted interval. We calculate the MVPF for each

subsidy using the following formula:

MVPFjt =
xjt −MECj1 ∗

dxj1
dsjt
−MECjt ∗

dxjt
dsjt

xjt − (p −MPC) ∗ (dxj1dsjt
+
dxjt
dsjt

)
(9)

MVPFjt is the MVPF of the subsidy given to group j for the targeted time interval t; p is the

price for a trip; MECj1 is the marginal external cost for the route taken by group j on the

usual time before the subsidy, and MECjt is the marginal external cost for the same route in

the time targeted by the subsidy. xjt is the average number of trips taken by group j in the

43See appendix B Figure A16.
44Our qualitative findings are the same when we use our welfare model in section A.1 to estimate welfare

changes.
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targeted travel time. The numerator consists of two parts: the inframarginal benefits for those

who receive the subsidy in time t (the first term) plus the change in external congestion costs

(the last two terms). The denominator consists of two parts as well: the direct costs to the

government of the subsidy for customers (the first term) plus the change in profits to BART

(the second term).

We measure the congestion level using the passenger density on the route travelled by group

j, at the usual travel time and also at the subsidized time. We also consider the travel delay in

estimating the marginal external cost in each time period. This allows us to calculate MECj1
and MECjt.

To calculate the marginal external cost, we need a measure of the value of time (see equation

(A9)). Using survey data from the sample, the median wage for a single person household

is $50 dollar per hour. We focus on these households because the survey did not ask for the

number of working individuals in a household, but did ask for income and the number of

people in the household. This wage estimate is higher than the median wage used to evaluate

experiment 1, which was based on all San Francisco residents. We consider a value of time

equal to 50% of the wage, as we did before, and also one equal to 75% of the wage. This

allows us to calculate the marginal external and social cost using equation (A9), as we did for

experiment 1.

We use the estimate of marginal private cost per trip discussed in section 2. We assume the

price of an average trip is about $4 for all groups. The behavioral parameters,
dxj1
dsjt

and
dxjt
dsjt

, are

based on the analysis in section 3. Table A11 in section A.13 presents the parameter values

we used. Figure 7 plots the MVPFs for each of the subsidies in experiment 2, by group. The

figure shows that the point estimates of the MVPFs of these targeted subsidies can be above

or less than 1 for both the case where VOT is 50% of the wage rate (panel a) (Small, 2012)

and 75% of the wage rate (panel b) (Goldszmidt et al., 2020). For example, the MVPF for

the subsidy that shifts riders who usually travel in 8:00-8:20am to travel during 8.40-9.00am

exceeds 1; the MVPF for the subsidy that shifts riders who usually travel from 9:20-9:40am

to travel during 8:40-9:00am is less than 1. The average MVPF for a value of time at 50% of

the wage rate is 1, but for a value of time at 75% of the wage rate the average MVPF is 1.17.

The impact of a change in the value of time cannot be signed apriori. A change in the value

of time enters into the analysis through its impact on the MEC in both periods. If the change

in the value of time entered into the calculation in only one period, the comparative statics

would be straightforward. However, when we allow for a change in the MEC in both periods,

the comparative statics depends on the MEC and demand parameters in both periods, and

this effect cannot be signed a priori. We find that in 75.7 percent of cases, an increase in value

of time from 50 to 75 percent increases welfare, and in 24.3 percent of cases an increase in
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Figure 7: MVPF of subsidy in experiment 2

(a) VOT - 50% of wages

(b) VOT - 75% of wages

Note: This figure shows the MVPF of a targeted subsidy. See text for details. The x-axis represents the beginning
time of the targeted time period. The shape of each point shows the usual travel time of the group of riders,
which is 20 or 40 minutes earlier or later than the targeted time. The value of time is assumed to be 50% of the
wage in panel (a) and 75% of the wage in panel (b).
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value of time decreases the welfare effect. 45

A comparison of the MVPFs from the two experiments suggests that the average MVPF from

the field experiment is lower than the MVPF obtained in the natural experiment. This may

at first seem unusual because one might expect net benefits to be higher in the case of tar-

geting (experiment 2) than with a general off-peak subsidy (experiment 1). However, there

are several possible reasons for this finding. First, the MVPF provides a measure of marginal

and not total net benefits. A social planner could in principle use the information from a

finely targeted experiment like the field experiment to achieve higher total net benefits than

an experiment that simply provided the same subsidy to all users (e.g, experiment 1). This

increase in net benefits could in principle be achieved with differentiated subsidies across

different time intervals. Second, the two experiments are measuring different things. The

natural experiment measures the marginal benefit of moving people from peak to off-peak,

and the field experiment measures the marginal benefit of moving from one relatively nar-

row time interval to an adjacent time interval, which is not necessarily off-peak. Finally, the

estimate of congestion used in the field experiment varies across all of the relatively small

time intervals, whereas we assume for simplicity in our natural experiment that there is one

average level of congestion that applies to the peak period, and there is no congestion in the

off-peak period. The bottom line is that there is no reason to assume a particular relationship

between the MVPFs estimated in the two experiments, but the more finely tuned approaches

could lead to higher net benefits from targeting.

6 Conclusion

Using a large natural experiment and a natural field experiment, we develop novel estimates

of peak and off-peak price elasticities for urban mass transit demand in San Francisco. Both

experiments allow us to obtain causal estimates of demand.

Using the demand estimates, we assess the welfare impacts of the price subsidies using a suf-

ficient statistics approach. Our analysis suggests that off-peak subsidies can increase welfare,

but the positive effects are reduced when consumers take the decisions of others into account

compared to when they do not. We also find a large variation in the welfare impacts of shift-

ing travel to different periods, which is explained by differences in demand and congestion

45The precise formula for measuring the impact of VOT on MVPF is obtained by differentiating equation (9)

with respect to value of time. It is given by −(
dMECj1
dVOT

dxj1
dsjt

+
dMECjt
dVOT

dxjt
dsjt

)MVPFjt , where VOT represent value of

time, and
dMECj1
dVOT and

dMECjt
dVOT are the change in each of the MEC with respect to VOT , that depends on the

crowding level during the time period, and how the delay relates to the number of passengers. See appendix
A.4 for the derivation and further discussion of the empirical results.
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characteristics. Finally, we show that the targeting of subsidies can increase welfare, but need

not do so if the regulator does not have accurate information on demand.

The experiments offer different insights into the impact of providing subsidies at particular

times for economic welfare. We find that the subsidy in the natural experiment generally

increases welfare. In the base case, we show that the marginal value of public funds is 1.6.

We also calculate the average net benefits per dollar of subsidy in the natural experiment,

and find that the average net benefits are $0.36 per dollar of subsidy expenditure. In con-

trast, for the field experiment, MVPFs showed considerably more variation depending on the

particular time period being targeted.

There are three areas for future research that we believe would be useful. First, with respect

to the issue of managing transport networks, we think it would be instructive to explore the

extent to which various forms of congestion pricing result in attractive MVPFs. In particu-

lar, we would advocate doing more experiments that allow for causal identification of key

elasticities related to peak and off-peak pricing. This would allow scholars to draw more

robust conclusions about the generalizability of studies in this area (List, 2020, 2022). In ad-

dition, we think it would be useful to have experiments that focused on both the intensive

margin (e.g., making greater use of a transport mode that a person already uses) and the ex-

tensive margin (e.g., changing transport modes or changing the city structure (Desmet and

Rossi-Hansberg, 2013; Severen, 2019; Tsivanidis, 2019; Heblich, Redding and Sturm, 2020;

Barwick et al., 2021)).

Second, as pointed out by Kleven (2021), sufficient statistics is only one of many approaches

for estimating the impacts of economics policies. A strength of this approach is its use of the

envelope theorem in simplifying the analysis. But this may also be a weakness when dealing

with non-marginal policy changes. While non-marginal changes can, in principle, be esti-

mated using our welfare model and the MVPF approach (Hendren, 2020), it is an empirical

question as to whether such estimates are reasonably accurate. It would be instructive to ex-

plore how different models yield different results for a particular class of problems, such as

the one studied here. It would also be useful to explore the relationship between sufficient

statistics approaches designed to measure welfare, such as those developed by Chetty (2009),

and the MVPF approach advanced by Hendren (2020).

Third, we noted in our analysis that the targeting of subsidies does not always meaningfully

increase welfare when the decision maker does not have perfect information. We think that

empirical and theoretical work could help identify when targeting actually helps.
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A APPENDIX

This appendix follows the presentation in the paper, providing extensions and derivations

related to the theory, empirical analysis of demand, and the empirical analysis of welfare. It

consists of 17 sections noted below.

Appendix A.1 – Welfare model

This section presents the derivation of the key welfare equation that is used in the theoretical

model.

Appendix A.2 - Optimal level of the subsidy

This section presents the derivation of the optimal subsidy in the theoretical model.

Appendix A.3 - Extension of model for welfare analysis of the field experiment

This section presents an extension of the theoretical model in section 2 with multiple markets

and congestion levels.

Appendix A.4 - Measuring the marginal external cost of a trip for the natural experiment

This section presents the methodology and empirical estimates that we used to estimate the

marginal external cost of a trip.

Appendix A.5 - Estimation of the marginal cost per trip

This section presents the estimation of marginal private cost for a BART trip that we used in

the welfare analysis in section 5.

Appendix A.6 - Estimation of feedback effect from congestion

This section presents the methodology and empirical estimates on the effect of congestion on

travel demand for the welfare analysis in section 5.

Appendix A.7 - Additional description for parameters for welfare calculation of experi-
ment 1

This section presents the additional parameters of the welfare calculation of the natural ex-

periment 1 that we used in section 5.

Appendix A.8 - Welfare effect of the natural experiment: Transbay and other routes

This section presents an additional table on the welfare effect of a subsidy in the natural field

experiment, including both the Transbay route and non-Transbay routes.

Appendix A.9 - Welfare and congestion impacts for the optimal subsidy

This section presents the optimal subsidy for the natural experiment and the welfare effects
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of these subsidies.

Appendix A.10 - Additional discussion for welfare analysis

This section discusses how we include the benefits from reduced externalities from other

modes of transit for the calculation of our welfare estimates for the natural field experiment.

Appendix A.11 - Additional estimates on welfare impact

This section provides a numerical example for how we calculate the annual welfare benefits

from the subsidy.

Appendix A.12 - Natural experiment welfare estimates when the marginal social cost
varies

This section compares the impact of changing the marginal social cost with a change in peak

travel with the case when marginal social cost is held constant.

Appendix A.13 - Parameters for welfare analysis of the field experiment

This section presents the parameters used for the welfare analysis of the field experiment,

including demand estimates, marginal external cost, and marginal private cost.

Appendix A.14 - Welfare estimates for the natural field experiment using the welfare
model

This section presents the welfare estimates for a targeted subsidy for the field experiment

using our welfare model.

Appendix A.15 - Comparing the Welfare Model with the MVPF calculation

This section explains how our welfare model relates to the marginal value of public funds

approach when the subsidy is funded by a lump sum tax.

Appendix A.16 - Comparing the demand response with exogenous congestion and
endogenous congestion

This section shows conditions under which the demand response to a subsidy is smaller in

absolute value for the case of endogenous congestion for both the peak and the off-peak peri-

ods.

Appendix A.17 - Welfare analysis of Perks subsidy with different demand responses

This section extends our basic theoretical welfare model to allow for two types of riders with

different demand responses.

49



A.1 Welfare model

We develop a welfare model that allows us to estimate the economic welfare effects of a sub-

sidy for off-peak consumers.46 Consumers maximize utility and the firm minimizes costs

subject to meeting demand.

Our key results in this section are intuitive. The welfare effect of a subsidy will be shown

to depend on how consumers respond to the subsidy, and the extent to which prices deviate

from marginal social cost. If the price is above the marginal social cost in a particular period,

and travel increases as a result of the policy intervention (e.g., a subsidy), then it contributes

to an increase in welfare. Summing the welfare changes across each period gives the overall

change in welfare.

A representative consumer faces the following utility maximization problem:

max
x1,x2,y

u(x1,x2, e) + y s.t. px1 + (p − s)x2 + y = Z

Utility, u, is a function of peak-travel (x1), off-peak travel (x2), and an externality associated

with peak travel (e).47 Z is income, assumed to be exogenous, and y is a numeraire good

with a price of unity that also provides utility. The price per trip for peak travel is p; s is the

subsidy given to off-peak riders, and (p − s) is the net price per trip for off-peak travel. This

quasi-linear formulation of utility implies there are no income effects.48

The utility function has the following standard properties: ux1
> 0, ux2

> 0, and ue < 0, where

these terms denote partial derivatives. We assume that the utility function is strictly quasi-

concave in x1 and x2, so the solution to the consumer problem is unique. In addition, we

assume that the marginal utility of peak travel is weakly decreasing in the level of congestion,

i.e., ux1,e ≤ 0.

Consumer maximization yields demand functions x1(p,s, e), x2(p,s, e) and y(p,s, e). The de-

mand for peak rides, off-peak rides, and the numeraire good all depend on the travel price,

the subsidy, and the level of the externality.

We model the regulated firm as one that minimizes costs, subject to the regulator setting

prices. In the case of a transport service, such as BART, the problem is typically to minimize

46The model could be interpreted as a general equilibrium model, provided the assumptions underlying a
sufficient statistics approach apply.

47We assume the externality level, e, is determined by a weakly monotonic and differentiable function of
total rides in the peak period, so that e = E(Nx1). This says that the level of the congestion externality is weakly
increasing with the total number of peak rides in the system, Nx1.

48The quasi-linear assumption can be relaxed by making different assumptions about the tax system. See
Kleven (2021).
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current losses, which are defined as operating cost less revenue from fares.

The firm is assumed to be a common carrier that must meet demand for N peak and off-peak

riders. In the simplest case, price is set by the regulator at p̄. The firm’s problem is given by:

π = min
p
C(Nx1,Nx2)−Np(x1 + x2)

s.t. p = p̄, Nx1 ≤ x̄1 and Nx2 ≤ x̄2.

Operating costs are given by the function C(Nx1,Nx2), and may include fixed components

that do not vary with demand, as well as variable components that do. Fare revenue is given

by pN (x1 + x2). We assume that the firm knows the consumer demand functions and must

meet that demand. The firm’s losses are assumed to be financed by a lump sum tax on con-

sumers.

We assume that the firm produces a level of output at the equilibrium, x̄1, in the peak pe-

riod to meet demand Nx1; and a level of output, x̄2, in the off-peak period to meet demand

Nx2. Any losses that the firm incurs are assumed to be covered by a lump sum transfer.49

Furthermore, the firm must charge the same price for peak and off-peak users.

We could make the firm’s problem more realistic in several ways. These include allowing for

the firm to set price up to some level established by the regulator, as well as considering a

game between the firm and the regulator (see, e.g., Spulber (1989)). If, for example, the firm

were allowed to set its price subject to a ceiling, then we would need to consider the impact

of a subsidy on the firm’s price. For relatively small subsidies of the type considered here,

the impact of a subsidy on price is likely to be de minimus, at least for the current period for

which prices are set. We thus opt for a simple formulation of firm behavior.

The welfare function is the sum of consumer utility, firm losses, and the subsidy:

W (s) =NV (p,s, e)−min
p
{C(Nx1,Nx2)−Np(x1 + x2)} − sNx2(p,s)

where V (p,s, e) is the indirect utility function of riders at the equilibrium, C(Nx1,Nx2) −
Np(x1 + x2) is the direct transfer to the firm for it to break even, and sNx2 is the government

expenditure for the off-peak subsidy.

The marginal effect of increasing the subsidy is represented by the first derivative of W(s)

with respect to s:
dW
ds

=N
dV
ds

+
d(−π)
ds

− (
d(−sNx2)

ds
) (A1)

49We add this assumption because it is not uncommon for mass transit systems to receive subsidies.
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The first term in the equation is the effect of the subsidy on consumer utility, which equals:

dV
ds

= x2 −
∂u
∂e

∂e
∂x1

dx1

ds

The indirect effect of the subsidy on consumer utility due to changes in the consumption of

x1 and x2 (holding congestion constant) is zero because of the envelope theorem. The effect of

the subsidy on the consumer’s utility thus equals the direct effect of the subsidy, x2, plus the

effect from induced changes in the level of congestion.

The change in BART lost revenues (the second term in equation A1) is

−dπ
ds

=N (
dC(Nx1,Nx2)

dNx1
− p)

dx1

ds
+N (

dC(Nx1,Nx2)
dNx2

− p)
dx2

ds

Under the assumption that the regulator sets the price at p = p̄, there is no indirect effect from

the price change on BART’s lost revenues.

The tax revenue change required to finance the subsidy is d(−sNx2)
ds = −Nx2 −N

dx2
ds .

Summing up terms and dividing by N , the welfare change with respect to a marginal change

in the subsidy is:

1
N

dW (s)
ds

= (p − dC(Nx1,Nx2)
dNx1

)
dx1

ds
+ (p − dC(Nx1,Nx2)

dNx2
)
dx2

ds
− sdx2

ds
− ∂u
∂e

∂e
∂x1

dx1

ds
(A2)

which gives equation (A2).

It is instructive to explain our model in the language of externalities, which generally defines

the marginal social cost as the sum of the marginal private cost and the marginal external cost.

We refer to MEC1 as the marginal external cost of congestion for a peak hour trip, which is

defined as −∂u∂e
∂e
∂x1

. Furthermore, the change in the level of congestion depends on the change

in peak hour travel, which gives the following expression: ∂u∂e
de
ds = ∂u

∂e
∂e
∂x1

dx1
ds = −MEC1

dx1
ds . We

assume that MEC1 is constant in the interest of simplicity. 50

We assume the incremental costs of service in the peak period,MPC1, and the off-peak period,

MPC2, are constant and equal. In particular, dC(Nx1,Nx1)
dNx1

= MPC1 = dC(Nx1,Nx2)
dNx2

= MPC2. The

marginal social cost of a peak-hour trip, MSC1, equals the sum of MPC1 and MEC1. Since

there is no congestion in the off-peak period, the marginal external cost of an off-peak trip is

50Appendix A.1 analyzes the case whereMEC1 varies with e. In many applications, including this one, it may
be reasonable to assume that MEC is constant over the region of interest, especially if the subsidy is "small". See
discussion in section A.12, noting the impact on the change in welfare of allowing MEC to vary is very small
(less than 1%).

52



zero, which implies MSC2 = MPC2.51 Both the marginal social cost in the peak period and

the marginal social cost in the off-peak period are constant in the basic model.

Equation (A2) can now be rewritten as

1
N

dW (s)
ds

= (p −MSC1)
dx1

ds
+ (p − s −MSC2)

dx2

ds
(A3)

Equation (A3) says that the welfare change from a small change in the subsidy depends on the

quantity response in both markets as well as the relationship between the price and marginal

social cost (Oum and Tretheway, 1988; Reguant, 2019). If, for example, the price in the

peak market, which represents the marginal willingness to pay in that market, exceeds the

marginal social cost in that market, then decreasing consumption by a small amount will de-

crease welfare (Hahn and Metcalfe, 2021). The same analysis holds for the off-peak market,

except the effective price in that market is the subsidized price.

The derivation of equation (A3) makes use of the envelope theorem for the consumer max-

imization problem. When the off-peak subsidy increases, consumers may alter their travel

demand because of an equilibrium change in the subsidy, the price or the congestion level,

but the resulting changes in consumption do not a have direct impact on consumer utility.

This is consistent with the sufficient statistics approach (Harberger, 1964; Chetty, 2009; Ja-

cobsen et al., 2020).

To evaluate the overall welfare effect of a price subsidy, s′, we integrate equation (A3) from

s = 0 to s = s′. If the change in output with respect to a change in the subsidy is constant (i.e.,
dx1
ds and dx2

ds are constant), then the per capita welfare effect of the subsidy is:

1
N

(W (s′)−W (0)) =
∫

1
N

dW (s)
ds

ds = (p −MSC1)
dx1

ds
s′ + (p − 1

2
s′ −MSC2)

dx2

ds
s′ (A4)

Equation (A4) (which is the same as equation 1 in the main text) represents the welfare effect

of an off-peak subsidy, s′, on a rider. It allows for the rider to respond to a change in the

equilibrium level of congestion, and the for price to be above or below the marginal private

cost. The change in total welfare depends on the difference between price and the marginal

social cost, the subsidy, and the changes in demand response. The intuition is similar to that

51We consider the implications of relaxing the assumption on off-peak external costs in appendix A.3
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developed above for equation (A3).52 However, the expression for price in the off-peak period,

p − s, is replaced by the average price as the subsidy varies from 0 to s′ (i.e., (p − 1
2s
′)).

We implement equation (A4) using causal estimates of demand that compare the case of ex-

ogenous congestion with endogenous congestion. This is because in some applications people

may take account of their impact on congestion in their actual demand, and in other cases

they may not. Thus, it would be useful to know how introducing endogenous congestion af-

fects welfare. In general, the answer is that the impact on welfare in moving from exogenous

congestion to endogenous congestion is ambiguous. However, with a few additional assump-

tions, it is possible to sign the impact of moving from exogenous congestion to endogenous

congestion in the peak and off-peak markets separately. Specifically, in our application, we

can show that moving to endogenous congestion will generally reduce losses in the peak pe-

riod and reduce gains in the off-peak period. The overall impact on welfare will depend on

whether the reduction in losses in the peak period exceeds or falls short of the reduction in

gains in the off-peak period.53

Graphical analysis of welfare

The expression for welfare, equation (1), lends itself to a graphical interpretation. Suppose,

for simplicity, that demand is linear in the peak and the off-peak market and that p exceeds

MSC1. Figure A1 shows the impact on welfare in the peak period of moving from a subsidy

of 0 to a subsidy of s′. The effect of the subsidy is to shift demand in from D0 to D1, with

a reduction in consumption from x1 to x′1. The net welfare loss is given by the negative of

rectangle C (which corresponds to (p−MSC1)dx1
ds s
′ in equation (1)). It consists of a decline in

producer profits (C+E) and a reduction in congestion costs, E. The resulting change in welfare

is –(C+E) + E = -C.54 That is, welfare declines in the peak market with the introduction of the

subsidy in this example.

The graph for the off-peak market is shown in Figure A2. The off-peak demand is given by

D. The subsidy price is reduced from p to p − s, with an increase in demand from x2 to x′2.

Because there is no change in congestion in the off-peak period (it is presumed to be zero), we

52It is of some interest to understand what would happen to welfare if prices in different markets were set
“optimally” in the sense that price equals marginal social cost in those markets. A straightforward extension
of our model provides an intuitive answer. The introduction of a subsidy leads to a reduction in welfare when
prices are set optimally because it distorts consumption patterns away from the optimum, giving rise to a fiscal
externality that reduces welfare. To see this result, we need to revise our model slightly. Instead of setting a
price, p, in both markets, suppose the regulator could set a price of p1 in the peak market and p2 in the off-
peak market. Then if p1 were set equal to MSC1 and p2 were set equal to MSC2, the expression in (A4) for the
per capita welfare effect is −1

2 s
′2 dx2

ds . Assuming that off-peak travel increases with an off-peak subsidy implies
welfare declines. That is, an off-peak subsidy adversely effects welfare if prices in the off-peak and peak markets
are set to their marginal social cost.

53See appendix A.16 for further details.
54We ignore any direct changes in consumer utility resulting from the subsidy in Figure A1 and Figure A2

below because of the envelope theorem.
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Figure A1: Graphical illustration of welfare impact of off-peak subsidy on peak period con-
sumers

x′1 x1

p

MSC1
MPC1

D0
D1

C

E

Notes: The welfare loss from the subsidy is given by rectangle C in this example. It reflects a combination of
the fiscal externality change due to a reduction in producer profits, -(C+E), and a reduction in the congestion
externality (E).

Figure A2: Graphical depiction of welfare impact of off-peak subsidy on off-peak period con-
sumers

x′2x2

D

p

p − s′
MPC2 =MSC2

A

B

Notes: The increase in welfare is given by A+B. See text for details.

can focus on the net change in financial flows from the government to compute the change in

welfare. The change in profits for producers from the additional units sold (x′2 − x2) is given

by the rectangle B + 2A. This means the government can reduce its expenditures to cover

BART’s losses by that amount. The change in the fiscal externality as the subsidy is gradu-
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ally increased from 0 to s’ is given by triangle A, which increases the government’s cost.55

The welfare change in the off-peak period is the difference between the increase in producer

profits (B+2A) less the change in the fiscal externality (A), giving A+B (which corresponds to

(p− 1
2s
′−MSC2)dx2

ds s
′ in equation (1). Adding this off-peak welfare change (A+B) to the change

in the peak period (-C) gives A+B-C, which corresponds to equation (1).

Modeling the response to congestion: endogenous and exogenous

An important issue for welfare is how consumers respond to the subsidy. We consider the two

polar cases of exogenous and endogenous congestion. These two cases will typically result in

different values for dx1
ds and dx2

ds in equation (A4), and thus, different empirical measures of the

welfare impact of the subsidy. In particular, if a rider takes others’ choices to shift to off-peak

into account, in equilibrium, fewer riders may shift to off-peak for a given subsidy.

To see how the two cases relate formally, define the peak and off-peak demand response of

riders to congestion as ∂x1(p,s,e)
∂e = v1e and ∂x2(p,s,e)

∂e = v2e. In the exogenous congestion case,

v1e = v2e = 0 (i.e., riders would not adjust their demand in response to a change in the level of

congestion (holding constant prices p and subsidy s); In the endogenous case, v1e , 0 or v2e ,

0. We assume that the price effect of the off-peak subsidy is to increase off-peak demand (∂x2
∂s >

0) and reduce peak demand (∂x1
∂s < 0). If a higher level of congestion reduces peak demand

and increases off-peak demand when price is held constant (v1e < 0,v2e > 0), the equilibrium

change in peak and off-peak travel in response to an off-peak subsidy (dx1
ds ) and (dx2

ds ) would

be smaller in magnitude with endogenous congestion than with exogenous congestion (when

v1e = v2e = 0) (see appendix A.16 for a formal proof.)

The intuition is that consumers will be less responsive to the price change when they take

into account the actual level of congestion on the network. With endogenous congestion,

people not only observe the subsidy and react, but also react to the levels of congestion, which

have gone down. They therefore do not switch as much in the endogenous case because the

effective price of congestion has gone down (compared to the exogenous case).

A.2 Optimal level of the subsidy

We derive the optimal level of the off-peak subsidy for the natural experiment. The optimal

level of the off-peak subsidy can be found by setting dW (s)
ds = 0, i.e., setting equation A3 equal

to zero.

This implies the optimal subsidy, s∗, is given by:

55This triangle represents the change in subsidy expenditure resulting from the off-peak consumption
change.
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s∗ = (p −MSC1)
dx1
ds
dx2
ds

+ (p −MSC2) (A5)

if (p −MSC1)dx1
ds + (p −MSC2)dx2

ds > 0, otherwise s∗ = 0.56

A.3 Extension of model for welfare analysis of the field experiment

In this section we extend the model in Section 2, allowing for multiple time periods and

heterogeneous groups of riders. Each group differs by their route, the route’s congestion

level, and the time of departure. As discussed, we exploit the fact that the field experiment

had random price variation at different times in the morning to identify key parameters.

Assume there are T time periods, J groups of riders, each with population size nj . The rider

population is N =
∑
nj . There are T ∗ J different congestion levels in terms of crowdedness.

A level of congestion for group j in period t, ejt, is assumed to only affect those riders. Fares

for particular groups, denoted by pj , may vary based on the distance each group travels.

Policy makers use a vector of subsidies, s, which can vary by time period and group. A

representative element sjt denotes the subsidy for group j at time t.

Consumers are assumed to be identical within a group, and each consumer maximizes their

quasi-linear utility function:

uj
(
xj , ej

)
+ yj

subject to the budget constraints
∑
t

(
pj − sjt

)
xjt + yj = zj , where xj is a vector of demand for

group j on each of the time period. e is a vector of congestion levels for all the time periods

and groups. Demand from group j for traveling at time t is xjt(p,sj , e), which gives the indirect

utility function Vj(p,sj , e) . Total demand in the system at time t is xt (p,s, e) =
∑
j xjt(p,sj , e)nj .

The profit of the firm (which can be negative) equals:

π =

∑
t

pjxt (p,s, e)

−C (x1(p,s, e), . . . ,xT (p,s, e))

where C(x1, ...,xT ) is the cost function for BART. We further assume marginal private cost

(per trip) does not differ by j or t, which we refer to as dC
dxjt

= MPC for any j and t. Subsidy

56This formulation assumes that the envelope theorem holds and the slopes of the demand curves are constant
with respect to a change in the subsidy. In principle, one could accommodate changing demands with a more
complicated formula.
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expenditure equals the sum given to each of the group:

∑
j

nj

∑
t

sjtxjt


Social welfare is the sum of utility of each groups of riders, plus profit of the firm minus the

subsidy expenditure.

The social welfare, W (s), is a function of the subsidy vector s

W (s) =
∑
j

njVj
(
p,sj , e

)
+ p

∑
t

xt

−C (x1, . . . ,xT )−
∑
j

nj
∑
t

sjtxjt (A6)

To simplify, we assume congestion in time period t for group j , ejt, affects only the utility

of group j, but not other groups. This is a reasonable assumption when a crowded train on

a specific route affects passengers travelling on that route at the specific time, but does not

affect passengers who travel on other routes or other time.

The welfare effect of a marginal increase of subsidy sjt, for group j to travel in time period t

is:
dW
dsjt

= nj

(pj −MPC) ∑
k=1,..,T

dxjk
dsjt

− ∑
k=1,..,T

sjk
dxjk
dsjt

+
∑

k=1,...,T

φjk
dxjk
dsjt

where φjk =
∂uj
∂ejk

∂ejk
∂xjk

is the marginal external cost of a trip by group j in time period k,

analogous to MEC we presented in section 4.

We assume each group receives a subsidy for one period of time. Therefore, we could re-index

the time periods for each of the group j, such that the time-period t the group usually travels

at as t = 1, representing “peak". For the period that they receive a positive subsidy, we refer it

to t = 2, or interchangeably t(j) to indicate that it depends on each of the group j, representing

“off-peak". We further assume that the demand response for group j in other time period are

all zero, i.e.
dxjk
dsjt

= 0 for k , 1,2 , and riders do not change their travel in response to change

in congestion level (i.e. “exogenous congestion” case). Following our assumption in section

2, we assume the demand response is locally constant (a linear demand curve).

The effect of subsidy to group j, analogous to equation (A3), is therefore

dW (s)
dsjt(j)

= nj

((
pj −MPC +φjt

)(dxj1
dsjt

+
dxjt
dsjt

)
− sjt

dxjt
dsjt

+
(
φj1 −φjt

) dxj1
dsjt

)

Denote the total welfare change is ∆Wjt

(
sjt

)
for a subsidy of size sjt , the welfare effect per

participants in group j is,
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1
nj

∆Wjt

(
sjt

)
=

1
nj

∫ 1

0

dW
dsjt(j)

dsjt(j)
dθ

dθ

= −1
2
s2jt
dxjt
dsjt

+
(
φj1 −φjt

) dxj1
dsjt

sjt +
(
pj −mc+φjt

)(dxj1
dsjt

+
dxjt
dsjt

)
sjt (A7)

We define MSC1 and MSC2 (marginal social cost of the two periods) by MSC1 =MPC +φj1,

MSC2 =MPC+φjt , similar to section 2 and with the same interpretation. Equation A7 could

also be rearranged in terms of MSC1 and MSC2,

1
nj

∆Wjt

(
sjt

)
= −1

2
s2jt
dxjt
dsjt

+ (pj −MSC1)
dxj1
dsjt

sjt + (pj −MSC2)
dxjt
dsjt

sjt (A8)

which is the expression presented in the theory developed in section 5. We use equation A8 to

evaluate the welfare effect of each of the subsidies provided in the field experiment. It gives

the welfare effect per person who received the subsidy for a particular group.
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A.4 Measuring the marginal external cost of a trip for the natural experi-

ment

To estimate the marginal social cost of a trip in the peak period (MSC1), we need an estimate

of marginal external cost (MEC1). We obtain MEC1 by making assumptions about the con-

gestion technology, the value people place on congestion in the peak period, and their value

of time (VOT).

We define congestion, e, as crowding (or density) and delay. Crowding is measured as the

number of passengers per square meter in a train car in the peak period. The reason we chose

this measure is because reducing crowding was an objective in both experiments and it is an

important externality. We use train level crowding data from BART to calculate the average

density of a train car.

The marginal external cost during the peak period is defined as MEC1 = ∂u
∂e

∂e
∂x1

. It is the

product of the effect of a congestion change on utility and the effect of an increase in peak

rides on congestion (crowding measured in density).

We assume an additional peak period trip has a constant effect on congestion that does not

vary with the level of subsidy. Moreover, the value placed on incremental congestion in the

peak period by the representative rider is also assumed to be constant. This implies MEC1 is

also constant.

We can derive the marginal external cost in the peak period with some additional assump-

tions. We assume passengers are distributed evenly across all train cars in the system, there-

fore n = Nx1
k where k is number of train cars during peak period, n is the number of passengers

per car, and e = n
a = Nx1

ka is the density in the car with a as the size of a car.57 Under this as-

sumption, the effect of a peak period trip on density in a train car is ∂e
∂x1

= e
x1

.

We define the effect of a congestion change on utility that results from crowding and delay in

journey time as φc and φd respectively.

A rider’s disutility from crowding depends on the level of congestion. We assume a minute

on a train with congestion level e gives rider disutility equivalent to that of spending T (e)

minutes on a train with e = 0. (i.e., T (e) is the “time-multiplier" in Haywood and Koning

(2015)). Therefore, the disutility from crowding for a train ride of t minutes with congestion

level e equals t ∗ T (e) in terms of time, and VOT ∗ t ∗ T (e) in monetary terms, where VOT is

the value of time for a rider. If riders on average take x1 trips a day on a congested train (e.g.,

in the peak period), the disutility from crowding per day is VOT ∗ t ∗ T (e) ∗ x1.

We assume that a marginal increase in density e increases the (per minute) disutility from

57We relax this assumption in our field experiment. See discussion below.
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crowding by a constant factor k (i.e. T
′
(e) = k > 0).The change in utility resulting from a

marginal increase in congestion therefore equals φc = VOT ∗ t ∗ k ∗ x1 , holding VOT , t and

x1 constant.58 Similarly, a rider may be delayed when congestion increases because it takes

longer for all passengers to board the train. We assume an increase in density increases jour-

ney time by a constant, o. We can empirically estimate o from our data (see below). For each

trip, this results in a monetary loss of VOT ∗ o. Since each rider takes x1 peaks trip per day,

φd = VOT ∗ o ∗ x1.

Following Haywood and Koning (2015), and adding the effect from delay, we define

MEC1 =
∂u
∂e

∂e
∂x1

= (φc +φd)
∂e
∂x1

= VOT ∗ t ∗ k ∗ e+VOT ∗ o ∗ e (A9)

where the second equality is a first order approximation.

We assume the value of time is half the hourly wage (Small, 2012) or 75% of the hourly wage

(Goldszmidt et al., 2020), which implies VOT = $12.5 or VOT = $18.68 respectively (the

median wage in San Francisco in 2016 was $24.9).59 We calculate the average in-train time in

the peak period as 37 minutes from our BART gate entry and exit data.

The average density in the peak period, e, is 1.13 passengers per square meter, estimated from

our novel BART train crowding data. We use a time-multiplier of 0.11 from Haywood and

Koning (2015). Thus, VOT ∗ t ∗ k ∗ e = $0.954 .

We find that an extra passenger per car results in a delay in departure time relative to its

schedule time of 1.37 seconds (see Table A1), or 0.023 minute (=1.37/60). This implies a unit

increase in density increases journey time by 1.59 minutes on average, (as d = n
a , where d is

density, n is number of person per car, a is the size of the car (68.93 sqm), let t be the journey

time in second, ∂t
∂d = a ∂t∂n = 0.023*68.93) i.e., o = 0.026 (= 1.59/60mins). Thus, VOT ∗ o ∗ e =

$0.37 (= $12.5*0.026*1.13). This implies MEC1 = $ 1.33 per peak hour trip.

To estimate the impact of an extra passenger per car on the delay, that allows us to calculate

the effect of an increase in density on delay (i.e., o), we use train-level data from Decem-

ber 2016 to March 2017. The data contains the scheduled and actual departure information

58As our model in section 2 is in terms of representative rider, the fact that φc, the change in utility resulting
from a marginal increase in congestion depends on the number of peak ride per person x1, is equivalent to that
the marginal change in congestion density is increasing with the total number of rides in the system. We assume
that the marginal external cost of a ride in off-peak to be zero in section 2, this could be considered as either
because T’(e) to be very low at a low level of e, i.e. a change of density has no impact on the utility of a rider per
ride because of preferences. Otherwise, the marginal external cost in the off-peak period could be lower than the
peak-period because there are fewer riders experience following equation A9, and it would only be approximate
zero if the density/traffice in the off-peak period is close to zero.

59Metropolitan and Non-metropolitan Area Occupational Employment and Wage Estimates, San Francisco-
Oakland-Hayward, CA, US Bureau of Labor Statistics, May 2016
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for each train at each station, for all trains that run for the day. We estimate the following

specification using the train and station level data

dijkdt = α + βnijkdt +µij +γt + ηd + εikdt (A10)

where dijkdt is the difference between the actual departure (door closing) time with the sched-

uled departure (door closing) time, for train k on date d scheduled at time t departing from

station i towards station j. nijkdt is the number of passenger per car on the train. To control for

any systematic delay at the station or route level, we control for the station-direction specific

fixed effect µij . We control for 20 minute time interval fixed effects γt, and date specific fixed

effects ηd that account for unobserved factors that affect delay on specific dates or time. As

robustness check, we control for any planned delay in terms of scheduled run time between

the previous station and station i for the train k (Xijkdt).

The number of passenger per car for a train at a station i is related to the net number of pas-

sengers getting on the train (i.e., number of people boarding the train net number of people

getting off the train) at all the stations before i, plus that at station i. To address potential

confounding factors at the route-time level, e.g., unexpected events or accidents happening

at the route-level or at the stations before i that affects both the delay time and the density,

we use the number of passenger boarding the train cars at station i as instrument for the

passenger per car on the train at station i (before departure). Our estimate therefore exploit

the variation in the number of boarding passengers at different stations and time to identify

the effect of congestion on delay. The OLS and IV estimates of β in the above equation are in

Table A1.

An increase in density in a train car, related to an extra passenger boarding at a specific

station, could be associated with additional delay because of: i) that resulting from when the

passenger board at the origin, ii) an increase in in-car crowdedness slowing down boarding of

other passengers at stations in between the origin and destination, and c) that resulting from

when the passenger leave the train at the destination. We estimate equation A10 exploiting

empirically the variation in number of passenger boarding each station, it is therefore most

closely represent the effect of a passenger boarding the train on delay (i.e. the effect of the

density on delay estimated in equation A10 is local with respect to the instrument). We do

not assume that the passenger would add to further train delay in stations beyond the origin,

e.g. if there is no further passenger boarding at later stations, it is unlikely that a passenger

in-car would add to further delay incrementally at each stations.
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Table A1: The effect of density on train delay

Outcome: Train-station delay (sec)
Sample - Peak period trains

(1) (2) (3) (4)
Passenger per car 0.636∗∗∗ 0.504∗∗∗ 1.370∗∗∗ 1.388∗∗∗

(0.153) (0.180) (0.344) (0.343)
Observations 72181 71540 72181 71540
Train-station specific controls N Y N Y
Date FE Y Y Y Y
Time-specific train FE Y Y Y Y
Station-line FE Y Y Y Y

Notes: The table presents the regression results with the outcome as the difference between a schedule departure
time (door closing) and the actual departure time (door closing) on the passenger per train car on the train.
Controls includes date fixed effect.

A.5 Estimation of the marginal cost per trip

We estimate the marginal private cost of a BART trip using information on BART’s operating

costs. We combine various sources of BART financial and operations information to compute

the marginal private cost of an individual BART trip. Our measure of operating expenses

includes the cost of maintenance.60

Assuming the total operating cost of BART depends only on the total number of passenger

trips, i.e., C (Nx1,Nx2) = C (Nx1 +Nx2) = C (Nx) , the relationship of marginal cost to aver-

age cost with respect to the number of passenger trips can be estimated using the following

equation:

C (Nx)t = α + βNxt + εt (A11)

where C (Nx)t is the total operating cost of BART in year t, Nxt is the annual number of total

trip in the system, and β represent the marginal private cost per BART trip.

From 2007 to 2016, the cost per passenger increases from $4.47 to $4.91 in nominal terms.61

In real terms, it declines from $ 5.66 to $ 4.91,62 while the annual ridership increases from 101

to 128 million.63 Figure 1 suggests that there is closer relationship between annual ridership

and total operating cost.

Table A2 column (1) provide estimate of the above equation. The implied marginal cost in

60p. 4-20, BART SRTP-CIP.
61Figure 3-2 BART SRTP-CIP.
62Deflated by San Francisco CPI provided by Bureau of Labor Statistics

(https://www.bls.gov/regions/west/data/consumerpriceindex_sanfrancisco_table.pdf).
63Figure 3-3 BART SRTP-CIP.
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Figure A3: Cost per trip and annual number of trips

Note: The graph plots the total operating cost and annual ridership from 2007 to 2016, in 2016 prices.

2016 is $1.89. The estimate is robust to controlling for yearly average energy price per kwh

in San Francisco.
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Table A2: Estimation of marginal cost

(1) (2)
totalcost totalcost

Annual ridership 1.898∗∗ 1.695
(0.724) (1.184)

Energy price (1000 kwh) -160996.3
(712507.1)

Observations 10 10

Note: The table represent estimate of equation A11. Total operating and annual rider ship data from from BART
annual financial report. Energy price is annual average price per kwh (in 2016 price), data source from U.S. Bu-
reau of Labor Statistics, Electricity Per KWH in San Francisco-Oakland-Hayward, CA (CBSA) [APUS49B72610],
retrieved from FRED, Federal Reserve Bank of St. Louis; “https://fred.stlouisfed.org/series/APUS49B72610”,
October 21, 2020.

A.6 Estimation of feedback effect from congestion

In this section, we present the methodology and the empirical estimates on the demand re-

sponse to congestion. When the level of congestion increases or decreases, this may affect the

travel demand by consumer, holding other factors constant. We need to estimate this demand

parameter to empirically evaluate and scale-up the welfare consequences of small-scale price

subsidies when considering the endogenous congestion case.

In the endogenous case, we need to estimate two important parameters, v11 = −∂x1
∂e

∂e
∂x1

and

v21 = −∂x2
∂e

∂e
∂x1

, which are the demand responses of peak and off-peak travel with respect to

a marginal change in peak-hour traffic in the aggregate. Intuitively, it measures how indi-

vidual demand responds to (expected) aggregate congestion changes. In this section we try

to estimate the demand response with respect to the aggregate travel, via congestion as the

channel.

We use the travel data of participants in the natural experiment to estimate these parameters.

We exploit variation in naturally occurring congestion changes, and that some riders may be

more affected by congestion at certain stations, to identify how riders responds to congestion.

Our strategy focus on variation in naturally occurring congestion at some part of the system,

e.g., idiosyncratic events or conferences near the stations that lead to an increase in demand

to travel to the area (therefore increasing congestion), and control for potential confounding

factors that affect the demand on all parts of the system, e.g., weather.

The majority of morning peak hour journey in BART uses two exit stations, Embarcadero

and Montgomery Street. Riders who regularly uses these busy stations are more likely to be
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affected by congestion at these stations, and may adjust their travel demand accordingly when

(expected) congestion at these stations changes. We estimate how congestion at these two exit

stations in the morning affects the peak and off-peak demand for riders who regularly exit

at these two stations. We use other riders who do not regularly use these two stations as the

control group (in the period before the price subsidies were introduced).

The treatment variable is the aggregate number of rides that exit at these two station on a

given day (i.e., comparing naturally occurring busy and quiet days), interacted with a dummy

variable in which the rider regularly uses these two stations (comparing with riders who do

not regularly uses these two stations). This is effectively a difference-in-differences strategy.

The aggregate number of rides that exit at the two stations proxy for the (expected) level

of congestion at the two stations on each day. We assume that riders who travel regularly

on route that exit at these two stations have correct expectation on the congestion at these

two stations. For example, a rider who travels regularly would be able to infer from public

information the level of congestion at the stations they uses regularly. Under this assumption,

our strategy estimate the demand respond to a change in the congestion level that are relevant

to the riders’ trip.

To control for unobserved factors that affects both demand and overall usage of BART system,

e.g., weather or events that disrupt or affect travel demand for the whole BART system, we

use riders who do not regularly exit at the two stations as the control group. We assume that

the demand from riders who do not travel regularly at these stations would not depend on

the congestion level on the station that they do not travel with.

Specifically, we estimate the following equation

yijt = βBusyi ∗ P eakBusyt +µt +γi + εt (A12)

where yit is number of peak hour trip by user j on date t. Busyi is an indicator for user i

regularly exit at Montgomery street and Embarcadero station in morning, the two busiest

stations in BART. P eakBusyt is the total number of trips (started) in peak hour that exited at

the two busy stations, in the whole BART system. γi is rider fixed effects and µt is date fixed

effects.

Table A3 reports the estimate of equation (A12).The sample include the travel demand of the

Perks program participants from April 2016 to February 2017. There are 17,185 riders in the

sample, among them, 7,477 use the Embarcadero and Montegomery Street stations regularly–

this is defined as these users exiting at one of the two stations with above median percentage

(median is around 97%) among their morning trips (5.30-10.30am) in the sample period. We

find that an increase in 10,000 peak hour riders exiting at the two busiest station reduces the
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Table A3: Peak hour trip by riders who regularly exit at Montgomery street and Embarcadero,
compared with others

Number of trip
(1) (2) (3) (4)

Peak Peak Off-peak Off-peak
Rider who regularly uses Embarcadero and Mont. St -0.00617∗ -0.00635∗ 0.00858∗∗ 0.00877∗∗

× Peak hour rides exiting at E&M (10,000) (0.00371) (0.00372) (0.00365) (0.00366)
N 1807471 1807471 1807471 1807471
Rider FE Y Y Y Y
Date FE N Y N Y

Notes: The table present the estimates of equation A12. Sample includes dates that riders have at least 1 trip for
the estimation of intensive margin response. Standard errors robust to 7 days of auto-correlation.

peak demand of riders who uses these routes regularly (among the participants of experiment

1) by -0.00635 per trip per day at peak hour. We also find that their demand for off-peak trip

increase by 0.00858 trip per day at off-peak hour.

The above are estimates of the effect of changes in aggregate rides on trip demand per person

- ∂x1
∂e

∂e
∂Nx1

and ∂x2
∂e

∂e
∂Nx1

. For the welfare analysis in section 4, we scaled the aggregate rides by

the total number of BART riders, which gives the feedback effect of the increase in peak rides

per person on the peak and off-peak demand ∂x1
∂e

∂e
∂x1

and ∂x2
∂e

∂e
∂x1

. Using N = 271,341, we find

v11 = −0.172 and v21 = 0.237.We use the estimates of these two parameters for our welfare

analysis in section 5.
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A.7 Additional description for parameters for welfare calculation of experiment 1

The following table A4 summarizes the key parameters used in the welfare calculation in the natural experiment.
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Table A4: Additional description for parameters for welfare calculation 1

Parameter and description Value Source
s’ ($ / trip) $0.25 Average subsidy per off-peak trip in the Perks experi-

ment.
dx∗2
ds (change in quantity/ $)

0.0664 (exogenous)
0.0625 (endogenous)

1st Perks experiment (dx2
ds = −ε22

x2
p , ε22 = −0.86; see

Section 3)
dx∗1
ds (change in quantity/ $)

-0.0194 (exogenous)
-0.0166 (endogenous)

1st Perks experiment (dx1
ds = −ε12

x1
p , ε12 = 0.44; see

Section 3)
v11 (feedback effect from con-
gestion on peak-ride)

-.172 Detail of estimation in appendix A2

v21 (feedback effect from con-
gestion on off-peak ride)

0.237 Detail of estimation in appendix A2

MEC1 (the external cost is mea-
sured in $/peak-trip)

-0.537 See appendix A1 for formula.

t (In-vehicle time) 37 (minutes) Calculated form BART journey data (gate entry to gate
exit)

Tm′(d) (Time multiplier) 0.11 (minutes/passengers per sq m) Haywood and Koning (2015)
Value of time (VOT) = 0.116 per minute (= $7 per hour) Small (2012) - value of time as half of wage. minimum

wage in SF in 2017 = $14
d (density in car, number of pas-
sengers per sq m)

1.13 (= 77.9/68.93) Weighted average number of passengers per car/car
size (weighted by number of passengers in car)

n (average passengers per car in peak hour) Calculated form BART crowding data
41.389
a (Car size, sq m) We take type B car as representative car, where the

length is 70’, with width 10.6’
68.93 (= 70 (feet)*10.6(feet)*
0.3048^2)
de
ds (change in crowding) -0.24 (exogenous) 1st Perks experiment.

-020 (endogenous)
p (average fare per journey) $3.99 Average off-peak fare per journey paid by riders in the

1st experiment.
dC
dNx1

, dC
dNx2

($/journey) $1.89 Calculated using cost and ridership information from
BART. See Appendix A5.

N 271,341(people) Average number of morning peak trip in BART per
day (47,756) / peak-trip per rider per days (estimated
from data of participants in the first Perks experi-
ment) (0.176)
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Table A5: Additional description for parameters for MVPF calculation of experiment 1

Description Value Source
Inframarginal benefit (x2) 0.307 1st experiment
Congestion benefit (−dx1

ds ∗MEC1) 0.0258 1st experiment; see Appendix A.3
Change in direct subsidy cost (x2) 0.307 1st experiment
Change in transfer to BART (−(p −MPC)(dx1

ds + dx2
ds )) -0.0987 1st experiment estimates

Marginal private cost (MPC) 1.89 See Table A4
Price per trip (p) $3.99 See Table A4
Marginal external cost (peak period) (MEC1) 1.33 See Table A4
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A.8 Welfare effect of the natural experiment: Transbay and other routes

This section presents the welfare calculations for a targeted subsidy of $0.25 for the Transbay

route (i.e., a heavily congested route) and all other routes. The key point is that welfare

increases by about 23% percent when targeting the Transbay route compared with all other

routes. We also provide a novel welfare framework that allows for everyone on BART to

receive a price subsidy (see Appendix A17).

The welfare calculation assumes that all network effects of the subsidy are captured by our

demand parameters derived in section (3), and the two systems can be treated independently.

In terms of the welfare equation (equation (1)), we are measuring differences in demand and

marginal social cost across the two sets of routes.

The first three rows of the table provide key parameters. MEC1 and MSC1 represent the

marginal external cost and marginal social cost in the peak period. Congestion is a key de-

terminant of MEC1 as explained in section A.4. Congestion is measured as the number of

passengers per square meter in a train car (see Appendix Table A4 for details). The equilib-

rium level of congestion depends on whether consumers take congestion into account. The

congestion during the peak period is about 0.4% percent higher in the case of endogenous

congestion. The welfare benefit associated with congestion alleviation is smaller in the en-

dogenous case because of a range of factors, including a weaker demand response.

The third and fourth rows of the table summarize welfare changes associated with peak and

off peak travel. The total welfare change (representing the sum of the welfare changes for the

peak and off-peak travel) is given in the final row for various cases.
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Table A6: Welfare effect of the subsidy for the Transbay route and other routes

Transbay routes Other routes
Parameter Exogenous

congestion
Endogenous
congestion

Percent
Change

Exogenous
congestion

Endogenous
congestion

Percent
Change

MEC1 $2.23 $2.23 . $0.93 $0.93 .
MSC1 $4.12 $4.12 . $2.82 $2.82 .
Congestion 1.518 1.5243 0.4 0.8116 0.815 0.4
Welfare change
with peak travel
change

0.0006 0.0005 -14.7 -0.0057 -0.0048 -14.7

Welfare change
with off-peak
travel change

0.0328 0.0309 -5.9 0.0328 0.0309 -5.9

Total Welfare
change

0.0334 0.0314 -6.1 0.0271 0.026 -4.1
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A.9 Optimal subsidy and welfare impact in the natural experiment

Table A7: Welfare and congestion impacts for the optimal subsidy

Parameter Exogenous
cong.

Endogenous
cong.

Percent
Change

Welfare change associated
with peak travel change

-0.028 -0.0239 -14.7

Welfare change associ-
ated with off-peak travel
change

0.1448 0.1362 -5.9

Total Welfare change 0.1168 0.1123 -3.8
congestion 0.6621 0.6874 3.8
Optimal subsidy 1.875 1.896 1.1

Notes: The table calculates the optimal subsidy using equation A5 in section A.2, for the natural experiment. It
uses parameters described in section A.7 for the baseline case. The optimal subsidy is over seven times higher
than the actual subsidy in the experiment. Overall welfare increases with the optimal subsidy. The decline
in ridership in the peak period reduces welfare, and the increase in ridership in the off-peak period increases
welfare. See text for details.
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A.10 Additional discussion for welfare analysis

This section explains how we include the benefits from reduced externalities from other

modes of transit in an illustrative calculation.

Including externalities in other modes of transport

This section analyzes the potential impact of other travel modes on the estimation of welfare

from section 5. The basic point is that considering possible travel shifts from other more

polluting modes to mass transit could increase the welfare estimate. We estimate this increase

in welfare could be 15.4 percent.

While our model in section 2 does not explicitly consider other modes of transport, it is pos-

sible that other modes of transport, such as automobiles or bus, could affect welfare. Using

the sufficient statistics framework, if the price paid by the consumer is equal to the marginal

social cost in the other mode of transport, then there would be no change in welfare resulting

from the consumption change in that mode.

If these other modes of transport are not priced optimally, the change in consumption in

the other modes would have an impact on the welfare. Our estimate of the welfare effect of

the subsidy could be biased downward if the market prices in these other modes are below

their marginal social cost. This is because we find net increases in travel on BART with the

introduction of the subsidy. Formally, we consider the case where dx1
ds + dx2

ds > 0, which implies,

on average, that there are participants who demand more BART rides after receiving the

subsidy. This is consistent with our empirical estimation in the natural experiment.

We provide an illustrative calculation for the case of emission reductions that could result

from the mode shift to BART.64

For simplicity, we will assume that total travel remains unchanged and an increase in a BART

trip reduces automobile travel by the same amount in terms of miles traveled. Then, the net

increase in welfare from shifting travel is given by the following formula:
(
dx1
ds + dx2

ds

)
s′φ ≥ 0,

where φr is the externality measured in dollars per trip.

Using the parameters in Table A8, we calculate that the externality associated vehicle travel

per mile associated with air pollution is $0.0055 per mile of automobile travel. With an

average BART journey of 14.6 miles per trip, this implies a net increase in BART trips is

associated with a reduction of external cost of $0.08, i.e., φ = 0.08. We present the welfare

estimates with and without the benefits from emission reductions for the natural experiment

64It is possible that there could be congestion benefits as well for automobile travelers. We do not include
such benefits because we do not have good data on their magnitude for shifts in particular time periods. If, for
example, shifts in automobile travel to BART occurred during periods in which there was little congestion on
highways, the benefits from reduced congestion would be small.
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in Table A9. The table shows that welfare benefits increase by about 15.8 percent in the

endogenous congestion case and 15.4 percent in the exogenous case when mode shifting is

accounted for.

Table A8: Parameters for vehicle externality

CO HC NOx CO2
Tier 2 Federal Exhaust Standards (2007-2016), grams per mile 3.40 0.10 0.14

0.50 0.50 0.50
Emission per mile (grams) 1.70 0.05 0.07 404
Damage per ton ($) 1045 15047 35566 46.27
Damage per gram ($) 0.0012 0.0166 0.0392 0.000051
Damage per mile ($) 0.0020 0.0008 0.0027 0.0206
Total damage per mile ($) 0.0261
Average trip length (miles) 14.60
Average damage per trip 0.38

Note: This table shows the ’average damage per trip’ parameter we have used to calculate the externality that
is associated with each extensive margin response per trip from vehicle. It assumes "New vehicle emissions are
typically 40 to 50 percent of exhaust standards" following Jacobsen et al. (2022). It does not consider variation
in vehicle ages and types.

Table A9: Welfare impacts of emission benefits for the base case and a targeted subsidy

Base case Targeted subsidy
Parameter Exogenous

conges-
tion

Endogenous
conges-
tion

Exogenous
conges-
tion

Endogenous
conges-
tion

(1) Total Welfare change 0.0291 0.0277 0.0334 0.0314
(2) Total Welfare change in-

cluding vehicle externality
0.0336 0.0321 0.0379 0.0358

Percent change (%) 15.4 15.8 13.5 14

Notes: Welfare is measured in dollars per person per weekday. Overall welfare increases with the subsidy. The
decline in ridership in the peak period reduces welfare, and the increase in ridership in the off-peak period
increases welfare. See text for details. The total welfare change is calculated from equation (1) in the first row;
and it is calculated with an adjustment factor of

(
dx1
ds + dx2

ds

)
s′φ assuming and φ = 0.38, s′ = 0.25.
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A.11 Additional estimates on welfare impact

In this section we provide a numerical example for how we calculate the annual welfare ben-

efits from the subsidy if all BART riders receive the price subsidy used in the natural experi-

ment.

Calculation of welfare impact

We provide details on how we calculate the annual welfare impact of the subsidy for two

cases that help bound the welfare estimates. First we compute the total benefits from the

experiment in the case of exogenous congestion if all riders in BART received the subsidy and

had the same elastcities as those in the natural experiment.65 Second we compute the total

benefits from the experiment in the case of exogenous congestion if only those riders in BART

receive the subsidy, and other riders do not change their behavior.

To compute annual benefits from rolling out the subsidy to all riders, we multiply three num-

bers – the number of riders, the average daily benefits for those riders, and the number of days

in a year. Our estimate of total riders in BART is N = 271,341. The average welfare impact

per person per weekday is $0.029 in the base case. This gives an annual welfare estimate of

2,052,966 (i.e., 0.029 ∗ 271,341 ∗ 260).

We next compute annual benefits from rolling out the subsidy to a subset of riders who ac-

tually participate in the experiment. We use equation (A15), which considers two types of

riders. In addition, we make the assumption that riders not in the experiment do not change

their behavior. We do this to illustrate the idea in the extreme case, and thus provide a plau-

sible lower bound for the welfare result. In terms of equation (A15), this means that k = 0

(i.e., those riders not in the experiment do not change their behavior.) Applying the equa-

tion, we let na = 17,545, nb = N − na = 253,796 and other parameters are the same as in the

previous case. This gives an average welfare impact of $0.00188 per person per day. The

aggregate welfare impact for the program rolled out for 6 months (130 days) is calculated as

0.00188 ∗271,341 ∗130 = $66,373. If the subsidy program is rolled out for the whole year, the

overall welfare impact would be twice that or 0.18 million.

Calculation of net welfare change per dollar of subsidy

In section 4 we divided the net welfare change by the subsidy expenditure to obtain the net

welfare change per dollar of subsidy measure. We provide the calculation here.

Under the assumption of exogenous congestion, the net welfare increase for the natural ex-

periment is 0.0291$ per person per day. We calculate the subsidy expenditure in this case

65The calculation of the endogenous congestion case is similar, except we use the numbers for demand re-
sponsiveness associated with that case.
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as x′2 ∗ s, where x′2 is the off-peak travel per day per person with the subsidy, and s = 0.25.

In this case, x′2 = x2 + dx2
ds s = 0.3236. This implies that the net welfare benefit per dollar of

subsidy expenditure is 0.0291
0.3236∗0.25 = 0.3597. If we allow for the two types of consumers to

differ in their demand response, and assume that other BART riders are half as responsive

to price as the participants in experiment 1, the net welfare benefit is 0.0155 per person per

day. x′2 = x2 + ( na
na+nb

+ nb
na+nb

0.5) ∗ dx
b
2

ds s = 0.316, where na is the number of participants in exper-

iment 1 and nb is the number of other BART riders. Thus, the net welfare benefit per dollar

of subsidy is 0.196.
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A.12 Natural experiment welfare estimates when the marginal social cost

varies

A key assumption in the body of the paper is that the marginal social cost is constant in

the peak period and in the off-peak period. In this appendix, we consider the empirical

implications of relaxing that assumption for the peak period. We compare the welfare result

using different functional forms for the MEC function. Our main conclusion is that in this

particular example, the results do no change much in moving from a constant MEC function

to a linear MEC function, or in moving from a constant MEC function to a quadratic MEC

function.

In the first subsection, we extend the theoretical analysis contained in Section 2. We start

with the general case, which includes the non-linear case, the linear case and the constant

case. We then examine the specific case where we impose the linearity assumption, which

results in a slightly simpler formula. In the second subsection, we discuss the empirical

welfare implications.

A.12.1 Allowing the marginal social cost to vary with the level of congestion

Following the model in Section 2 and equation (1), we derive the formula in the case when

the MSC is a non-linear function of congestion, and discuss how that allows us to estimate

the impact of MSC1 varying with e. We present the derivation here. Equation (1) is reprinted

below.

1
N

(W (s′)−W (0)) =
∫

1
N

dW (s)
ds

ds =
∫

(p −MSC1)
dx1

ds
+ (p − s′ −MSC2)

dx2

ds
ds

=
∫
p
dx1

ds
s′ −

∫
MSC1

dx1

ds
+
∫
ds+ (p − s′ −MSC2)

dx2

ds
ds

(A13)

where the limits of integration are 0 and s′.

When MEC1 varies with the level of e, we have MSC1(e) = MPC +MEC1(e). We can rewrite

the second term in the final expression in (A13) as

∫ s′

0
MSC1(e)

dx1

ds
ds =

∫ s′

0
(MPC +MEC1(e))

dx1

ds
ds =MPC

dx1

ds
s′ +

dx1

ds

∫ s′

0
MEC1(e)ds

One way to simplify the preceding expression is to define an average MEC1 over the range of

the subsidy as MEC1 =
∫ s′

0
MEC1(e)ds1

s . The above equation can then be rewritten as:

78



MPC
dx1

ds
s′ +

dx1

ds
s′
∫ s′

0
MEC1(e)ds

1
s′

=MPC
dx1

ds
s′ +

dx1

ds
s′MEC1 (A14)

(A14) is general, and thus allows for a non-linear functional form for MEC1. The difference

between the second term in equation (A13) associated with the marginal social cost, compared

with that of equation (1), is that the constantMEC1 is replaced withMEC1 for the calculation

of MSC1.

The other terms in equation (A13) would be the same as in equation (1) in the text. Estimating

MEC1 requires knowledge of both the shape of theMEC1(e) function and also how congestion

varies with the subsidy. In particular,

MEC1 =
∫ s′

0
MEC1(e)ds

1
s′

=
∫ e′

e(0)
MEC1(e)

1
de
ds

de
1
s′

(A15)

where e′ is the congestion at the subsidy level s′, e(0) is the congestion level before the subsidy.

For example, if we assume MEC1(e) = β0 + β1e + β2e
2 and de

ds is constant, we could calculate

MEC1 numerically.

We can derive a simpler formula if we assume MEC1 is linear. Suppose we assume that

the marginal external cost can be written as MEC1(e) = α0 + αe, where α0 is a non-negative

constant and α is a positive constant. The second term in equation (A13), associated with the

marginal social cost in the peak period, becomes∫
MSC1(e)

dx1

ds
ds =

∫
(MPC +α0 +αe)

dx1

ds
ds

=MPC
dx1

ds
s′ +

dx1

ds
α0s
′ +
dx1

ds
α

∫ s′

0
e(s)ds

(A16)

If we assume de
ds = de

dx1

dx1
ds is approximately constant, i.e. de(s)ds ≈

e(s′)−e(0)
s′ , we can simplify (A16)

by noting ∫
e(s)ds =[e(s)s]s=s

′
s=0 −

∫
sde(s) = e (s′)s′ − de(s)

ds

∫
sds = e (s′)s′ −

(e′ − e(0))
s′

1
2
s′2

=
1
2

(e (s′) + e(0))s′ = ēs′

where ē is the average of the congestion levels before and after the subsidy change. This

implies ∫
MSC1(e)

dx1

ds
ds = (MPC +α0 +αē)

dx1

ds
s′ =MSC1(ē)

dx1

ds
s′ (A17)
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Substituting the preceding expression into Equation (A13) yields:

1
N

(W (s′)−W (0)) = (p −MSC1(ē))
dx1

ds
s′ +

(
p − 1

2
s′ −MSC2

) dx2

ds
s′ (A18)

The only difference between equation (1) and equation (A18) is that MSC1(ē) replaces MSC1.

A.12.2 Empirical implementation

We can use expressions (A14) and (A15) to estimate the impact on welfare in the non-linear

case, and expressions (A17) and (A18) for the linear cases. We first consider the linear case

and then consider an example for the non-linear case that is quadratic.

Linear MEC

Consider the case of a linearMEC function that varies with e. We follow the derivation above

for expression (A15), and the formula for the MEC function we presented in appendix A.4

where we illustrate the constant MEC case.

In the constant MEC case, we evaluate the MEC function at the initial value of e(0). For

the linear MEC function, following the derivation in equation (A18), we use the empirical

representation of theMEC function in appendix A.4. We evaluate this function at the average

congestion level before and after the subsidy, i.e., ē = 1
2 (e′ + e(0)), where e′ is the density at

subsidy level s′, and e(0) is the density before the subsidy. The key difference between the

upward sloping linear MEC case and the constant MEC case is that we allow the MEC value

to vary as the subsidy is implemented.66

The empirical MEC function in the linear case is based on data from (Haywood and Koning,

2015). They estimate T′(e), the rate of change of the time multiplier with respect to the density

(see Appendix A.4). That paper uses a contingent valuation approach to estimate how the

willingness to pay for reduced congestion varies with the level of congestion. It is based on

the subway system in Paris in 2010-2011, and is thus not necessarily applicable to other areas

and time periods. Thus, this calculation should be viewed as illustrative.

MEC with a more flexible functional form

As a robustness check, we also implement the welfare analysis with an MEC function that is

more flexible than the linear form. Specifically, we estimate the function that determines the

time multiplier T(e), using the following data points taken from Haywood and Koning (2015)

by applying ordinary least squares and allowing for a quadratic functional form. (Haywood

66We assume α0, the constant term in the linear MEC case, is zero. That is, the marginal external cost is zero
when there is no congestion.
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and Koning (2015) fit a linear function, which is the value of T ′(e) we used for the constant

and linear case). The data points for (T(e), e) are: (1,0), (1,1), (1.05,2), (1.18,2.5), (1.26,3), (1.4,4)

and (1.57,6). The time multiplier T(e) measures how much time one is willing to travel on a

crowded train with density e, relative to 1 unit of time spent on a train with no congestion

(i.e., e = 0).

The slope of the fitted function gives the valuation of a marginal change in density, T ′(e) =

0.075 + 0.0106e. This gives a new MEC function MEC1(e) = VOT ∗ t ∗ (0.075+ 0.0106e) ∗ e +

VOT ∗ o ∗ e. We use the constant values described in Appendix A4 for VOT, t, and o. The

resulting functional form for MEC1(e) is quadratic in e. For comparison, in the linear case,

we assume T ′(e) is a constant.

For the quadratic MEC case, the welfare change associated with the congestion externality in

the peak period is derived from equation (A13).

∫ s′

0
MEC1(e)

dx1

ds
ds =

dx1

ds

∫ s′

0
MEC1(e)ds =

dx1

ds

∫ e′

e(0)
MEC1(e)

1
de
ds

de

where e′ is the density at subsidy level s′, and e(0) is the density before the subsidy. We

integrate the term
∫ e′′
e′
MEC1(e) 1

de
ds

de numerically, assuming de
ds to be constant for simplicitly.

67. Equivalently, as discussed in the earlier subsection, we could calculate an "average" MEC,

as 1
s′

∫ s′
0
MEC1(e)ds, and substitute it in place of MEC1 in equation (1).

Table A10 shows the results for three cases: a constant MEC function (the base case), a linear

MEC function, and a quadratic MEC function. The main takeaway from Table A10 is that

the welfare numbers are similar across all three cases. This reflects the facts that: 1. the MEC

is only one component of welfare; and 2. The average values are not that different across all

three cases (1.33 for the constant MEC case; 1.298 for the linear MEC case; and 1.1 for the

quadratic MEC case).

For example, the total welfare change for the exogenous case is about $0.029 per person

per day with a constant MEC function, $0.029 for a linear MEC function and $0.028 for a

quadratic MEC function. The results are also similar for endogenous congestion (.028, .028

and .027). Overall welfare percentage decreases in welfare (between exogenous and endoge-

nous congestion are also similar, on the order of 5%.

It is worth pointing out that these assumptions are quite sensitive to our assumptions about

the MEC function. Because there is a paucity of data on this issue, we believe more research

would be useful to inform policy makers.

67We assume de
ds = ∂e

∂x1

dx1
ds is constant, which is a reasonable approximation when the subsidy is small. See

Appendix A.4 for more details.
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Table A10: Results comparing welfare change with three different MEC functions

MEC constant MEC Linear function MEC Quadratic func-
tion

Exo. Endo. %
change

Exo. Endo. %
change

Exo. Endo. %
change

Welfare
change
associ-
ated with
peak travel
change

-0.0037 -0.0032 -14.7 -0.00389 -0.00332 -15.2 -0.0049 -0.0041 -15.1

Welfare
change
associated
with off-
peak travel
change

0.0328 0.0309 -5.9 0.0328 0.0309 -5.9 0.0328 0.0309 -5.9

Total
Welfare
Change

0.0291 0.0277 -4.8 0.0289 0.0276 -4.7 0.0279 0.0267 -4.3

Notes: Numbers are calculated for the base case for the natural field experiment. Numbers may
not add due to rounding. Column (1)-(2), (4)-(5) and (7)-(8) present the welfare estimates under
assumption that the MEC function is constant, a linear function and a quadratic function respectively.
Columns (1), (4) and (7) present welfare estimates under the assumption of exogenous congestion.
Columns (2), (5), and (8) present welfare estimates under the assumption of endogenous congestion.
Columns (3), (6), and (9) present the percentage change between the exogenous and endogenous cases.
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A.13 Parameters for welfare analysis of the field experiment

The table below presents the parameters used for calculations for the field experiment.

Table A11: Parameters for welfare analysis of the field experiment

VOT = 75% of wage VOT = 50% of wage 75% 50%

Usual time (t1) Targetted time (t2) dx1
ds

dx2
ds MEC1 MEC2 MEC1 MEC2 MVPF MVPF

070000 062000 -0.02 0.01 1.13 0.30 0.05 -0.50 1.28 1.06

070000 064000 -0.02 0.01 1.15 0.58 0.06 -0.31 1.17 1.04

070000 072000 -0.02 0.00 1.51 1.90 0.31 0.56 1.13 1.03

070000 074000 -0.02 0.02 1.55 1.97 0.34 0.62 1.18 0.96

074000 070000 -0.02 0.00 1.31 0.45 0.17 -0.40 1.33 1.06

074000 072000 -0.02 0.00 1.86 1.72 0.54 0.45 1.18 1.05

074000 080000 -0.02 0.03 2.15 2.38 0.73 0.89 0.81 0.91

074000 082000 -0.02 0.01 2.15 2.71 0.73 1.11 1.37 1.11

080000 072000 -0.04 0.00 1.67 1.23 0.41 0.12 1.50 1.12

080000 074000 -0.04 0.02 1.82 1.61 0.51 0.38 1.23 1.07

080000 082000 -0.04 0.01 2.04 2.46 0.66 0.94 1.34 1.10

080000 084000 -0.04 0.03 2.07 1.91 0.68 0.57 1.48 1.18

082000 074000 -0.03 0.02 2.08 1.53 0.69 0.32 1.35 1.14

082000 080000 -0.03 0.03 2.52 2.09 0.98 0.69 1.15 1.07

082000 084000 -0.03 0.03 2.39 2.03 0.89 0.65 1.22 1.10

082000 090000 -0.03 0.01 2.01 1.06 0.64 0.01 1.72 1.28

084000 080000 -0.01 0.03 2.37 2.39 0.88 0.89 0.45 0.79

084000 082000 -0.01 0.01 1.99 2.14 0.63 0.72 1.07 1.02

084000 090000 -0.01 0.01 1.76 1.20 0.48 0.10 1.10 1.06

090000 082000 -0.02 0.01 2.01 2.82 0.64 1.18 1.19 1.04

090000 084000 -0.02 0.03 2.55 3.10 1.00 1.37 0.71 0.85

090000 094000 -0.02 0.01 1.28 0.19 0.16 -0.57 1.34 1.09
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092000 084000 -0.02 0.03 1.04 1.72 0.00 0.45 0.49 0.72

092000 090000 -0.02 0.01 1.56 1.94 0.34 0.59 1.06 1.00

092000 094000 -0.02 0.01 0.93 0.28 -0.08 -0.52 1.11 1.01

092000 100000 -0.02 0.01 0.77 -0.16 -0.19 -0.81 1.32 1.12

094000 100000 -0.01 0.01 -0.02 -0.27 -0.71 -0.88 1.08 1.14

094000 102000 -0.01 0.05 0.18 -0.29 -0.58 -0.89 0.58 -0.06

100000 102000 -0.04 0.05 -0.22 -0.39 -0.85 -0.96 1.30 1.42

100000 104000 -0.04 0.01 -0.32 -0.69 -0.92 -1.16 0.92 0.69

Note: The table presents the parameter estimates for experiment 2. Column (1) indicates the usual travel time of the subsidized group, and column (2)

indicates the subsidized time. Columns (3) and (4) are the demand response estimated from experiment 2. Columns (5) and (6) indicate the marginal

external cost of the usual and subsidized travel time, when value of time is 75% of wage. Columns (7) and (8) indicate the marginal external cost for the

usual and subsidized travel time, when the value of time is 50% of wage. Columns (9) and (10) indicate the calculated MVPF of the subsidy. The MEC

data are based on train load data provide by BART.
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A.14 Welfare estimates for the natural field experiment using the welfare

model

In the body of the paper, we used MVPF as an index of welfare with different values for

the value of time (VOT). We found that MVPFs could be above or below one, depending

on the particular field experiment. Figure A4 shows a similar calculation using a measure

of net benefits per person per weekday with a $.25 subsidy. It relies on the welfare model

summarized in section 2, and uses point estimates. The key point of the figure is that some

estimates for net benefits are positive and some are negative. The figure assumes that VOT is

50% of the wage. The same qualitative finding emerges in the case where VOT is 75% of the

wage rate.

Figure A4: Welfare effect of the subsidy in the field experiment (VOT = 50% with sufficient
statistics approach)

Note: This figure shows the welfare effect (per subsidy recipient) of a targeted subsidy. The x-axis represents the
beginning time of the targeted time period. The shape of each point shows the usual travel time of the group of
riders, which is 20 or 40 minutes earlier or later than the targeted time. The value of time is assumed to be 50%
of the wage.
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A.15 Comparing the Welfare Model with the MVPF calculation

In this section, we compare the expression for dW (s)
ds derived using our welfare model (Equa-

tion A3) with an expression we derive for dW (s)
ds using the MVPF approach. We will show the

following lemma:

Lemma 1: If the net cost to the government is funded by a lump sum tax, then the expression

for dW (s)
ds using sufficient statistics is the same as the expression for dW (s)

ds that we derive below

for the MVPF.

Proof: A general expression for the MVPF is

x2 −MEC
dx1
ds

x2 + s dx2
ds − (p −MPC)(dx1

ds + dx2
ds )

(A19)

where we use the same notation introduced in section 2, and assume that this applies to N

individuals. The numerator represents the willingness to pay and the denominator represents

the net cost to the government. If we assume that this net cost is funded by a lump sum tax,

then we can represent the difference between benefits and costs at the margin using the MVPF

approach as the numerator minus the denominator in expression (A19). That is,

dW (s)
ds

= (x2 −MEC
dx1

ds
)− (x2 + s

dx2

ds
− (p −MPC)(

dx1

ds
+
dx2

ds
))

= −MECdx1

ds
− (s

dx2

ds
− (p −MPC)(

dx1

ds
+
dx2

ds
))

= (p −MPC −MEC1)
dx1

ds
+ (p − s −MPC)

dx2

ds
(A20)

The second line follows from cancelling x2 and the third from factoring. Noting that MPC +

MEC1 =MSC1 and MPC =MSC2 yields

(p −MSC1)
dx1

ds
+ (p − s −MSC2)

dx2

ds

This is the same expression as equation (A3) , except that equation is given in per capita

terms. Multiplying equation (A3) by N gives the expression here, which proves Lemma 1.

In short we have shown conditions under which the MVPF calculation yields the same welfare

result for measuring the impact of a change in the subsidy as our model that uses sufficient

statistics. The general result on welfare also follows (Equation 1) if we use the same assump-

tions.

86



A.16 Comparing the demand response with exogenous congestion and

endogenous congestion

In this section, we argue that the demand response to a subsidy is smaller in absolute value for

both the peak and the off-peak periods with endogenous congestion than exogenous conges-

tion.

Claim: The claim comes in two parts. 1. If ∂x1
∂s < 0 and ∂x1

∂e < 0, the response for peak demand

in the endogenous congestion case is smaller in absolute value than that for the exogenous

congestion case; and 2. In addition, if ∂x2
∂e > 0, the change in off-peak rides from a subsidy in

the endogenous congestion case is also smaller in absolute value than that for the exogenous

congestion case.

Consider the first part of the claim. We begin by computing the total derivative of peak travel

with respect to a change in the subsidy. Starting with the peak demand function, x1(p,s, e(x1)),

and differentiating with respect to s, yields

dx1

ds
=
∂x1

∂s
+ v11

dx1

ds

, where v11 = ∂x1
∂e

∂e
∂x1

= v1e
∂e
∂x1

. In particular, the total change (dx1
ds ) equals the sum of the direct

price effect of the subsidy (∂x1
∂s ) , and the feedback effect from congestion, v11

dx1
ds .

Solving for dx1
ds , we have

dx1(p,s, e))
ds

=
∂x1
∂s

1− v11

To sign v11, note that because v1e < 0 and we assume ∂e
∂x1

> 0 (that is, increases in peak demand

contribute to congestion), we have v11 < 0. This implies that

|dx1

ds
| < |∂x1

∂s
| .

We now prove the second part of the claim. Taking the total derivative of the off-peak demand

function x2(p,s, e(x1)) with respect to s gives

dx2

ds
=
∂x2

∂s
+
∂x2

∂e
∂e
∂x1

dx1

ds
.

We use the expression for dx1
ds from above, which yields:
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dx2

ds
=
∂x2

∂s
+
∂x2

∂e
∂e
∂x1

∂x1
∂s

1− v11
.

Letting v21 = ∂x2
∂e

∂e
∂x1

, we have

dx2(p,s, e)
ds

=
∂x2

∂s
+
v21

∂x1
∂s

1− v11
.

Since ∂x2
∂e > 0, v21 > 0. This implies that the second term in the above equation is negative

(provided that dx1
ds < 0). This yields the result:

|dx2

ds
| < |∂x2

∂s
| .

In other words, the increase in ridership with an off peak subsidy is less with endogenous

congestion than with exogenous congestion.

These results also allow us to compare the travel in peak and off-peak periods in the endoge-

nous congestion case with the exogenous congestion case. Let xo1 and xo2 be the peak and

off-peak travel before the subsidy. Furthermore, let x′1 and x′2 be the peak and off-peak travel

after the subsidy with exogenous congestion; and x̃1, x̃2 be the peak and off-peak travel after

the subsidy with endogenous congestion case. Noting x′1 = x0
1 + ∂x1

∂s s
′ and x̃′1 = x̃0

1 + dx1
ds s
′, we

have x′1 < x̃1 because dx1
ds >

∂x1
∂s . Using a similar argument, x′2 > x̃2 because dx2

ds <
∂x2
∂s .
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A.17 Welfare analysis of Perks subsidy with different demand responses

Riders who join the Perks program may have different demand responses than the BART

riders who do not. We provide a theoretical model below that allows for different demand

responses for these two groups in estimating the welfare gains of a subsidy. Allowing for

different price responses enables us to put bounds on what the welfare effects could be as we

scale these price subsidies up to the entire BART ridership.

Consider two types of riders, one who joins the Perks program (type a) and one who does

not (type b). There are na type a riders and nb type b riders, exogenously given. Define the

indirect utility function for each type as Va(p,s, e) and Vb(p,s, e) respectively, and define the

“average” consumption, x1 and x2 as,

xk =
1
N

(nax
a
k +nbx

b
k) = µax

a
k +µbx

b
k

for k ∈ {1,2}, where N = na + nb, x
a
1 and xa2 are peak and off-peak consumption for type a

consumers, and xb1 and xb2 are similarly defined for type b consumers. µj =
nj
N is the share of

population of type j, for j ∈ {a,b}.

We consider the welfare impact of a single uniform subsidy for both type of riders. Welfare

is given by the utility of type a, plus the utility of type b, minus the transfer to BART and the

subsidy cost. The formula is

W (s) = naVa(p,s, e) +nbVb(p,s, e)−minC(Nx1,Nx2)−Np(x1 + x2)−naxa1s −nbx
b
1s

with the indirect utility function given by Vj(p,s, e) = max
x
j
1,x

j
2
u(xj1,x

j
2, e) +Z − pxj1 − (p − s)xj2

for j ∈ {a,b}.

The marginal welfare change from a change in s is

dW
ds

= (
∑
j=a,b

nj(x
j
2 +

∂Vj
∂e

de
ds
−nj

dx
j
2

ds
s −njx

j
2)) +N (p − c)(dx1

ds
+
dx2

ds
)

where c is the marginal cost of the cost function c = C1(Nx1,Nx2) = C2(Nx1,Nx2) = MPC

(and C1 and C2 are partial derivatives with respect to the first and second arguments in the

cost function).

This expression simplifies to

dW
ds

= na(
∂ua
∂e

de
ds

) +nb(
∂ub
∂e

de
ds

)−na
dxa2
ds
s −nb

dxb2
ds
s+N (p − c)(dx1

ds
+
dx2

ds
), (A21)
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noting that ∂Va∂e = ∂ua
∂e and ∂Vb

∂e = ∂ub
∂e at the optimum (by the envelope theorem).

Congestion is determined by the technology E(.)

e = E(Nx1) = E(nax
a
1 +nbx

b
1)

The impact of the subsidy on congestion is given by

de
ds

= E′(Nx1)(na
dxa1
ds

+nb)
dx2

1

ds
=
∂e
∂x1

1
N

(na
dxa1
ds

+nb
dxb1
ds

) =
∂e
∂x1

(µa
dxa1
ds

+µb
dxb1
ds

) (A22)

.

DefineMEC1 = −(µa
∂ua
∂e +µb

∂ub
∂e ) ∂e∂x1

. It represents the the marginal external cost of an increase

in total peak rides, as (µa
∂ua
∂e +µb

∂ub
∂e ) ∂e∂x1

= (na
∂ua
∂e +nb

∂ub
∂e ) ∂e

∂Nx1
.

Substituting (A22) into Equation (A21) yields:

dW
ds

= na(p− c−MEC1)
dxa1
ds

+na(p− c− s)
dxa2
ds

+nb(p− c−MEC1)(
dxb1
ds

) +nb(p− c− s)
dxb2
ds
. (A23)

The first two terms represent the change in welfare associated with a change in type a demand

in the peak and off-peak markets, and the second two terms represent the change in welfare

associated with a change in type b demand in the peak and off-peak markets. Thus, the

average per capita welfare change from a change depends on the demand characteristics of

both groups and their respective sizes.

Equation (A23) can be seen as a generalization of 1 in the text, which measures the welfare

change for one group that received the subsidy. Here, we are measuring the welfare change

for two groups

Exogenous congestion when other riders (type b) are less responsive to prices by some
fraction

We can simplify equation (A23) if we assume that the demand response in both markets is

similar for those consumers who do not join Perks. Specifically, assume that type b riders

have a demand response that is proportional to type a in both markets. Specifically, we let
dxbj
ds = k

dxaj
ds where k is between 0 and 1, for j ∈ {1,2}. Substituting in equation (A23) yields:

dW
ds

= (na +nbk)(p − c −MEC1)
dxa1
ds

+ (na +nbk)(p − c − s)
dxa2
ds
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Integrating this expression between 0 and s′ yields the total welfare change:

W (s′)−W (0) =
∫ s′

0

dW
ds

ds = (na +nbk)(p − c −MEC1)
dxa1
ds
s′ + (na +nbk)(p − c − 1

2
s′)
dxa2
ds
s′

The welfare change per N population is

1
N

(W (s′)−W (0)) =
(na +nbk)

N
(p − c −MEC1)

dxa1
ds
s′ +

(na +nbk)
N

(p − c − 1
2
s′)
dxa2
ds
s′

= µ((p − c −MEC1)
dxa1
ds
s′ + (p − c − 1

2
s′)
dxa2
ds
s′) (A24)

where µ = na+nbk
N is between 0 and 1.

The formula here for two groups is very similar to the formula for welfare change for one

group in the text (see equation 1), with the difference being we have added the factor µ. Note

that when the demand responses of the two groups are identical (k=1), the two formulas are

the same.
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B Additional Figures and Tables

Figure A5: Natural experiment - Travelling time of participants

Note: The figure plot the density of trip by its starting time for participants in the first experiment. Sample
includes trips taken between with start time between 5.30am to 10.30am on Mon-Fri. Sample period include
Mar 2016 to Feb 2017, that includes 2,099,895 trips by 17,788 participants. Bin width is 5 minutes interval.
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Figure A6: Program enrollment

Note: The graph plots the cumulative share of users signed up, and who had activated.

Table A12: Natural experiment - Long term effect DiD

Outcome: Share of all trip in morning
All dates

Peak Hour Bonus Hour
(1) (2)

Treated users × Perks period -0.0211∗∗∗ 0.0255∗∗∗

(0.00133) (0.000963)

Treated users × Post-Perks period -0.00946∗∗∗ 0.00135
(0.000909) (0.000927)

Treated users -0.00297∗∗∗ 0.0744∗∗∗

(0.000554) (0.000644)
Observations 636 636

Note: Daily observation for Perks users and the rest of network. Sample includes 1 Apr 2016-30 Jun 2017,
weekdays excluding public holidays. Robust standard error reported in parenthesis.
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Figure A7: Proportion of actual offers given (aj)

Note: This figure plot the share of user-date under each of the types of offers, during the program period among
the treated (in (a)) users.

Table A13: Route level difference-in-differences estimate

Outcome: Share of all trip in morning
Peak Hour off-peak shoulder hour

(1) (2)
Treated users × Perks Period -0.0332∗∗∗ 0.0225∗∗∗

(0.00428) (0.00416)
Observations 97457 95432
Route-Perks user FE x x
Week FE x x

Notes: The table reports estimation of equation 2 at route level at weekly level. The outcome is weekly observa-
tion for each route in the BART network for Perks users or the rest of network. Sample includes 1 Aprl 2016 to
28 Feb 2017, all weekdays excluding specific public holidays. Standard error clustered at route-group level.
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Figure A8: BART system map
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Figure A9: Distribution of fare for each route on BART

Notes: The figure plots the distribution of fare for each route on BART. The diamond markers represent the fare
distribution for routes excluding those to or from the San Francisco International Airport or Oakland Interna-
tional Airport. The triangle markers represent the distribution for routes that are to or from the San Francisco
International Airport or Oakland International Airport. (2017 prices)
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Figure A10: Example of ads to motivate sign-up in the natural experiment

Figure A11: Long term - Share of peak hour journeys

(a) Peak hour (b) Off-peak shoulder hour

The graph plot trend of weekly average peak hour (panel (a)) and off-peak shoulder hour (panel (b)) journey
share in the morning (6:30am-7:30am and 8:30am-9:30am among all journeys in 5:30am-10am), for weekdays.
Sample include 1 Apr 2016-30 Jun 2017, excluding public holidays.
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Figure A12: Test of pre-trend

(a) Share of peak hour (b) Share of off-peak shoulder hour

The figure plots the test of pre-trend with respect to Figure 1 and 2. It estimate a variant of equation 2, which is
y = β1 ∗T reated ∗May+β2 ∗T reated ∗June+β3 ∗T reated ∗Jul+ηg+γt+εgt , where ygt is the share of peak hour trips
(panel (a)) or share of off-peak shoulder hour trips (panel (b)) in the morning from 5.30am-10.30am on date t
for group g. May, June and Jul are indicators for month May, June and July 2016 respectively. Sample includes
dates from April 2016 to 23 Jul 2016. β1, β2 and β3 represent respectively the change of difference between the
Perks participants and the rest of the network, from April to the respective month.

Figure A13: Test of pre-trend

(a) Peak hour trips (b) Share of off-peak shoulder hour

The figure plots the test of pre-trend with respect to Figure 1 and 2. It estimate a variant of equation 3, which is
yit =

∑
k βk ∗T reated ∗Dk +σi +µt +εit , where yit is the number of trip during peak hour (panel (a)) or bonus hour

(panel (b)). Dk is an indicator of each week before the treatment in 23 Aug. Sample includes dates from 2016
week 27 to week 34. βk represent respectively the change of difference between the early enrolled participants
and the late enrolled participants, from week 27 to the respective week of the year. Baseline/omitted week is
2016 week 27.
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Figure A14: Implied treatment effect on off-peak shoulder hour travel by modal travel time
in pre-treatment period

Notes: The figure plots the treatment effect on off-peak shoulder hour travel implied by the estimation of equa-
tion (4) with additional interaction of the term P erksActiveit with indicators of the modal travel time of user i
in period before perks. The modal travel time are defined by 15 minutes intervals.

Figure A15: Example of ads to motivate sign-up in the field experiment
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Figure A16: Welfare effect of subsidy in the field experiment – by subsidized time

(a) VOT - 50% of wages

(b) VOT - 75% of wages

Note: This figure shows that welfare change of a targeted subsidy can be positive or negative. The figure plots
the welfare effect of the subsidy per rider using equation 1”. The x-axis represents the beginning time of the
targeted time period. The shape of each point shows the usual travel time of the group of riders, which is 20 or
40 minutes earlier or later than the targeted time. The value of time is assumed to be 50% of the wage.
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Table A14: Average treatment effects by time period: Early vs. late comparison with alterna-
tive definition

OLS (late enrolled users: Oct 15 to Nov 5)
Outcome: Number of trips daily

Peak Off-peak shoulder (Either) Total (5.30-10.30am)
(1) (2) (3)

Early enrolled users × Perks Period (β1) -0.00817∗∗ 0.0125∗∗∗ 0.00105
(0.00355) (0.00428) (0.00497)

Observations 582017 582017 582017
Date FE x x x
User FE x x x
Sample mean (before Perks) 0.18 0.31 0.57

Note: The sample includes daily trips from June 1 to October 15, 2016, excluding August 23 to September 2. The
Perks period is defined as dates after September 2. Early enrollers are defined as those who enrolled between
August 23 and September 2. The control group includes those who enrolled between October 15 and November
5, 2016. Standard errors are clustered at user-week level. The sample means are for late enrolled users in periods
before the Perks period.

Table A15: Route level difference-in-differences estimate - by direction of travel towards
Montgomery Street and Embarcadero

Outcome: Share of all trip in morning
Peak hour off-peak shoulder hour

(1) (2) (3) (4)
Treated useres × Perks period -0.0213∗∗∗ -0.00323 0.0216∗∗∗ -0.00108

(0.00485) (0.00707) (0.00531) (0.00744)
N 4793 1416 4791 1421
Route-Perks user FE x x x x
Week FE x x x x
Sample Westbound Eastbound Westbound Eastbound

Notes: The table reports estimation of equation 2 at route level at weekly level. The outcome is weekly obser-
vation for each route in the BART network for Perks users or the rest of network. Sample includes 1 April 2016
to 28 Feb 2017, all weekdays excluding specific public holidays. Standard error clustered at route-group level.
Sample includes routes exiting at Montgomery Street and Embarcadero. Column (1) and (3) report the estimate
for the sample with origin travelling westbound towards Montgomery Street and Embarcadero. Column (2)
and (4) report the estimate for the sample with origin travelling eastbound towards Montgomery Street and
Embarcadero.
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Table A16: Treatment effects on early or late off-peak shoulder hour: staggered activation

OLS
Outcome: Number of daily trips

Off-peak shoulder hour (early) Off-peak shoulder hour (late)
(1) (2)

Active status level 0.0175∗∗∗ 0.00992∗∗∗

(0.00261) (0.00289)
Observations 821643 821643
Date FE x x
User FE x x
Baseline mean 0.291 0.254
Implied own-price elasticity -0.653 -0.424

Note: Sample includes dates from 1 Jul-6 Nov 2016. Standard errors clustered by users and dates. Early off-
peak shoulder hour refers to trip between 6.30-7.30am; late off-peak shoulder hour refers to trip between 8.30-
9.30am.

Figure A17: Comparing Perks program participants with the rest of the BART network

(a) Perks participants (b) Rest of the BART network

Note: The figure plots the average daily share of trips taken by the participants in the first experiment in each
time interval from 530am-1130am. It also plots on the same figure the average share of daily trips at each time
interval taken by the rest of the BART users. The sample for Before Perks period includes April 1, 2016 to
August 22, 2017 for all weekdays. The sample for Perks peiod includes August 23, 2016 to February 28, 2017
for all weekdays.
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Table A17: MVPF - average and transbay

All Transbay
Exo. congestion Endo Exo. Endo

MVPF 1.598 [1.479, 1.716] 1.563 [1.444, 1.681] 1.6818 [1.5602, 1.803] 1.6336 [1.515, 1.751]

Table A18: Alternative DiD estimator - staggered activation for the natural experiment

Outcome: Number of trips daily
Peak Off-peak shoulder (Either) Other Total

Treatment effect (In-
stantaneous)

-.0158 .00540 -.00495 -.0153

(De Chaisemartin
and d’Haultfoeuille,
2020)

(0.0038) (0.00513) (0.00317) (0.00523)

ATT (weekly data) -0.0137 0.00590 -0.0074 -0.0155
(0.004) (0.0052) (0.0029) (0.0054)

(Callaway and
Sant’Anna, 2021)

(0.0046) (0.0055) (0.0034) (0.0056)

Observations 1426285 1426285 1426285 1426285

Note: The table present the alternative DiD estimator for the treatment effect of subsidy in experiment 1.
The first row report the estimate of the instantaneous treatment effect of activation in experiment 1 follow-
ing (De Chaisemartin and d’Haultfoeuille, 2020). Standard errors are calculated with 50 bootstrap replication.
The second row report the average treatment effect following Callaway and Sant’Anna (2021) estimated with
daily data averaged at weekly level, using the "not yet treated" as control group.
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Table A19: Summary statistics - field experiment

Period before experi-
ment

Experiment period

Average no. of trip by
time period

Share of user-date received experiment offer

Shift early offers Shift late offer
Time period mean mean
062000 0.020 0.022
064000 0.028 0.028
070000 0.064 0.041
072000 0.100 0.045 0.003
074000 0.106 0.037 0.012
080000 0.107 0.026 0.024
082000 0.083 0.009 0.030
084000 0.054 0.001 0.021
090000 0.030 0.000 0.024
092000 0.017 0.000 0.026
094000 0.012 0.017
100000 0.008 0.009
102000 0.005 0.005
104000 0.003 0.004
N 196083 96982 96982

Notes: The table report summary statistics for experiment 2. Column (1) report the participants average daily
number of trip by 20 minutes time interval in period before the experiment. Column (2) and (3) report on aver-
age for each date during the experiment period, the number of user received offer by the incentivized time period
in the morning. Column (2) (and (3)) report the average number of users receive an offer that the incentivized
offer is earlier (later) than their usual travel time.

Table A20: Journey characteristics

(1) (2) (3) (4)
All BART Perks pre Early pre Late pre

Distance (mile) 14.60 15.22 15.07 13.77
(9.05) (9.76) (9.48) (9.33)

Fare ($) 3.89 4.05 4.04 3.90
(1.31) (1.30) (1.29) (1.26)

Duration (s) NA 2226.83 2216.75 2071.28
NA (1094.26) (1073.71) (1082.17)

N 23,770 13,481 2,225

Notes: The table report the average journey characteristics for all BART morning trips, and for the Perks sample.
Column (1) report the journey characteristics for all BART trips between Jun-Aug 2016. Columns (2) present the
journey characteristics for the Perks sample for the period between Jun-Aug 2016. Column (3) and (4) present
the characteristics for the Early and late enrolled perks riders, respectively during Jun-Aug 2016.
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Figure A18: Subsidy in experiment

Notes: The figure plots the distribution of subsidy amount in experiment 2 for the morning subsidies. The
y-axis represent the share of subsidy given with the amount (in bin width of 0.1$), among all subsidies in the
respective type.

Table A21: Decomposition of the staggering enrollment specification

Rush Hour Bonus Hour Total (Weight)
Overall -0.007 0.024 0.014

(0.001) (.0016969) (0.002)
Timing groups -0.008 0.025 0.014 0.783
Never v timing -0.003 0.021 0.014 0.217

Notes: the table present the Goodman-Bacon decomposition for the staggering enrollment specification. The
first row present the overall DiD estimates on a fully balanced sub-sample. The second and third row present
the estimates by decomposition. The fourth column present the weights.
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Figure A19: Comparison of treated and control group before experiment

Notes: The figure plots the share of entry time for the trip among all trips between 5.30am-10.30am, for the
treated and control group respectively before the experiment. It also plot the 95% confidence interval for the
share clustering at user level.

Table A22: Comparison of treatment and control group for experiment

(1) (2)
Distance Fare

Treated 1155.9 0.0771
(737.3) (0.0648)

N 145066 149933
Mean 26459.42 4.40

Notes: The table presents a regression of the outcomes on a treatment indicator for the field experiment, for the
period three months before the experiment.
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Figure A20: MVPF of subsidy in experiment 2 - including mode shifting

(a) VOT - 50% of wages

(b) VOT - 75% of wages

Note: This figure shows the MVPF of a targeted subsidy. See text for details. The x-axis represents the beginning
time of the targeted time period. The shape of each point shows the usual travel time of the group of riders,
which is 20 or 40 minutes earlier or later than the targeted time. The value of time is assumed to be 50% of the
wage in panel (a) and 75% of the wage in panel (b).
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Table A23: Average effect of experiment 2 subsidies - by shift early and shift late subsidies

Usual travel time Subsidized time
(1) (2) (3) (4)

T Shif tearly -0.0353∗∗ 0.0336∗∗∗

(0.0163) (0.00928)

T Shif tlate -0.0458∗∗∗ 0.0217∗∗∗

(0.0171) (0.00820)
N 31501 24851 31501 24851

Note: The table present the estimates for equation 5 and 6. The outcome variables for column (1)-(2) is an
indicator for rider i who received an shift early or shift late offer on date t and travelled at the subsidized
time. The outcome variables for column (3)-(4) is an indicator for rider i who received an subsidies (actual
or hypothetical) on date t and travel on the usual travel time, corresponding to that of the subsidy offer given.
Sample in column (1) and (3) includes treated and control riders for the dates they received a shift early subsidies
(actual or hypothetical). Sample in column (2) and (4) includes treated and control riders for the dates they
received a shift late subsidies (actual or hypothetical). Standard errors are clustered at rider level.
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