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Abstract

One of the promising opportunities offered by AI to support the decarbonization of electricity grids
is to align demand with low-carbon supply. We evaluated the effects of one of the world’s largest Al
managed EV charging tariffs (a retail electricity pricing plan) using a large-scale natural field experi-
ment. The tariff dynamically controlled vehicle charging to follow real-time wholesale electricity prices
and coordinate and optimize charging for the grid and the consumer through AI. We randomized finan-
cial incentives to encourage enrollment onto the tariff. Over more than a year, we found that the tariff
led to a 42% reduction in household electricity demand during peak hours, with 100% of this demand
shifted to lower-cost and lower-carbon-intensity periods. The tariff generated substantial consumer sav-
ings, while demonstrating potential to lower producer costs, energy system costs, and carbon emissions
through significant load shifting. Overrides of the AI algorithm were low, suggesting that this tariff was
likely more efficient than a real-time-pricing tariff without AI, given our theoretical framework. We
found similar plug-in and override behavior in several markets, including the UK, US, Germany, and
Spain, implying the potential for comparable demand and welfare effects. Our findings highlight the
potential for scalable AI managed charging and its substantial welfare gains for the electricity system
and society. We also show that experimental estimates differed meaningfully from those obtained via
non-randomized difference-in-differences analysis, due to differences in the samples in the two evalua-
tion strategies, although we can reconcile the estimates with observables.
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1 Introduction

Artificial intelligence (AI) presents both major risks and opportunities for the power
grid (International Energy Agency, 2025a). Growing research highlights that AI's own
electricity needs, driven by expanding data centers, are straining grids worldwide (De Vries,
2023; Aljbour et al., 2024; Bogmans et al., 2025; Chen, 2025), a concern now central to
public and policy debates (Erdenesanaa, 2023; Kolbert, 2024). Yet Al also offers tools
to improve energy efficiency and flexibility by forecasting, coordinating, and optimiz-
ing electricity demand in increasingly dynamic systems (Schweppe et al., 1980, 1981;
Antonopoulos et al., 2020; Biswas et al., 2024; Boopathy et al., 2024; Sandalow et al.,
2024).

Al has the potential to optimize energy demand management for both residential and
industrial customers. In theory, the most efficient approach to energy demand manage-
ment is real-time pricing (RTP), which directly exposes consumers to the marginal cost
of electricity (Nicolson et al., 2018; Borenstein, 2005b; Hinchberger et al., 2024). How-
ever, a significant body of evidence suggests that consumers are reluctant to engage with
day-ahead or real-time prices, due to the cognitive burden and effort required to optimize
their usage, along with the price uncertainty they must constantly monitor (Harding and
Sexton, 2017; Fabra et al., 2021). In this context, Al managed tariffs offer a compromise:
they allow real-time responsiveness while insulating customers from volatile prices and
enabling supplier risk management. Al can also coordinate millions of devices to smooth

aggregate demand, stabilize wholesale prices, and ensure local grid stability.

Electric vehicles (EVs) exemplify both the challenges and promise of Al in energy
systems. As flexible, mobile loads with storage capacity, EVs can absorb or supply power
to help balance renewables. Yet optimal managed charging requires solving complex,
real-time problems of cost minimization, congestion avoidance, and user preferences,
precisely the kinds of tasks Al excels at (Rigas et al., 2014; Kaack et al., 2022; Yaghoubi
et al., 2024). With EV sales now exceeding 20% of new cars globally (International Energy
Agency, 2025b) and projected to drive 15% of future energy demand growth (Agency,
2024), unmanaged charging could worsen peaks and strain infrastructure (Li and Jenn,
2024; Bailey, Brown, Shaffer and Wolak, 2025; Bernard et al., 2025). Managed charging
with Al instead aligns demand with low-cost, low-emission periods, reducing system

stress.

Despite increasing policy and commercial interest in AI managed charging (Hilder-
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meier et al., 2022), causal evidence on consumer engagement with Al-based tariffs re-
mains scarce (Black et al., 2024). Dozens of managed-charging pilots exist (Lowell et al.,
2017; Bradley et al., 2018; Seamonds and Lowell, 2018; NYSERDA, 2021; Anwar et al.,
2022; Jones et al., 2022; SEPA, 2024), but most lack credible counterfactuals or sufficient
scale.! We address this gap with what we believe is the first natural field experiment on

the world’s largest Al managed EV tariff.

In partnership with Octopus Energy Limited, the UK’s largest electricity supplier, we
conducted a large-scale randomized encouragement design involving 13,233 suspected
EV owners across Great Britain.? The intervention promoted the Intelligent Octopus
(I0) Go tariff, which combines time-of-use (ToU) pricing with AI managed charging.’
Customers faced a lower off-peak rate (approx. 60% discount) overnight; if the Al chose
to charge during the day, it still billed at that off-peak rate. In return, Octopus controls

the charging, although the consumer can override the algorithm.

IO Go is now, to the best of our knowledge, the world’s largest managed EV charging
tariff, serving approximately 300,000 customers across the UK and expanding rapidly in
the US, Germany, France, Italy, and Spain. Currently, the tariff manages roughly 2GW
of power in Great Britain (Green, 2025). In our setting, the AI managed charging tariff
uses real-time wholesale prices as a key input into scheduling charging, without expos-
ing consumers to these granular prices. It combines linear programming with machine
learning models to minimize expected energy costs, reduce grid congestion, and support
grid balancing, all subject to customer-set constraints (a “ready-by" deadline and target
state of charge). The Al tariff we studied represents a partial and centrally coordinated
implementation of RTP. It preserves key elements of allocative efficiency by shifting load

away from high-cost periods but bypasses price-based incentives at the individual level.*

The field experiment allowed us to estimate the causal effect of financial incentives

In the United States alone, over $100 million has been allocated across at least ten recent or ongoing managed EV
charging pilots (SEPA, 2024), yet none constitutes a proper field experiment with a credible counterfactual. Moreover,
none deploy Al-based charging management at meaningful scale, and all suffer from limited sample sizes, severely
undermining statistical power and the reliability of their conclusions. These shortcomings underscore the need for
rigorous empirical experiments.

20wnership was modeled from load profiles consistent with home chargers.

3 Al optimization by Kraken Technologies uses real-time data on EVs, local and national loads, prices across many
markets, and grid conditions, applying machine learning and linear programming to optimize charging.

4While one way to assess the efficiency of this Al managed charging tariff is by estimating its correlation with
wholesale prices (Hinchberger et al., 2024), this proves challenging in our case. The Al is performing a complex real-
time optimization to maximize overall welfare, not just in wholesale markets, but also in ancillary services, while
simultaneously optimizing consumer welfare. This includes aggregating and coordinating user greferences to ensure
EVs are charged when needed. Additionally, the sufficient statistics approach to evaluating tariff efficiency overlooks
total net benefits, particularly the role of tariff take-up and the own-price and cross-price elasticity (over time) of
those who take up the tariff. Al has the promise of making RTP tariffs palatable (i.e., reducing the need for consumer
attention and reducing high price uncertainty) in the future for consumers.
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on adoption of the AI managed charging tariff, and to use this variation to instrument
for the impact of managed charging on electricity consumption. Treated trial partici-
pants were emailed and randomly assigned to one of four groups: (1) email only; (2)
£5/month; (3) £50/month; or (4) £50/month conditional on not overriding the AI man-
aged charging, with all payments lasting three months. A pure control group received
no contact. We pre-specified two primary outcomes: (1) tariff take-up and (2) electricity
consumption, with particular focus on consumption during the evening peak demand
period from 16:30-20:30, over the 12 months following the encouragement (we followed

our pre-analysis plan, unless otherwise stated).

In addition to the experimental analysis, we conducted a supplementary pre-specified
difference-in-differences (DiD) analysis using observational data to estimate the impact of
managed charging on electricity consumption among customers who voluntarily adopted
the tariff outside of the trial. We compared electricity use before and after adoption
for these customers, relative to a control group of similar customers who had not yet
adopted, exploiting variation in adoption timing. This approach provides complemen-
tary evidence on the effects of managed charging in a real-world, self-selected yet scaled-

up setting.

The intervention we studied represents a bundled treatment that combines ToU pric-
ing, automated scheduling, and real-time algorithmic optimization. We cannot cleanly
separately identify the contribution of each component (although we provide some sug-
gestive evidence of the contribution of the Al algorithm). However, as electricity sys-
tems grow more complex, with greater price volatility from renewable generation and
weather variability, the proliferation of distributed assets, and increased participation of
those assets across multiple markets, purely deterministic or rule-based scheduling may
become less effective. In such settings, more advanced Al architectures for coordina-
tion and adaptive control may become increasingly valuable (Si et al., 2025; Wang et al.,
2025). At the same time, understanding consumer acceptance of Al managed systems
remains critical, since there is far less empirical evidence on how households respond
to Al-driven automation, as opposed to more familiar ToU or deterministic scheduling
systems. We show that customer acceptance, as measured by the frequency of overriding

the algorithm, is a sufficient statistic for measuring the welfare of such tariffs.



1.1 Primary findings

We report seven main sets of findings. First, email-based encouragements increased
adoption of the AI managed charging tariff. Across all treatment groups, assignment
raised enrollment in IO Go relative to the control. Even simple email contact (no incen-
tive) increased take-up by 3.4 percentage points; £50/month incentives roughly doubled
that effect. Importantly, we suspect that these take-up rates represented a lower bound,
as enrollment was constrained by technical compatibility: trial participants needed a
supported charger or EV to join (although most chargers and EVs in the market were
eligible). Lacking data on compatibility, we cannot identify the true eligible population.
Thus, the measured effects likely understate the potential impact in a fully compatible
setting.> We find a price elasticity of the take up of the managed tariff to be -0.143 (from
a £150 to a £15 subsidy).

Second, we observed strong retention and widespread acceptance of Al managed
charging among trial participants. Trial participants who enrolled in IO Go largely re-
mained on the tariff, with post-incentive take-up rates statistically indistinguishable from
those during the first three months. Among adopters, we observe high adherence to the
Al managed charging schedule: over half never overrode the Al managed charging sched-
ule, on any given day there is a 1% likelihood of overriding, and only 2.3% of total elec-
tricity consumption occurred via overrides. These patterns suggest that, once adopted, Al
managed charging integrates smoothly into daily routines with minimal disruption, un-
derscoring its potential for long-term grid flexibility. Additionally, these overrides tended
to be customer-specific rather than correlated across space or time, indicating that they

are unlikely to generate coincident demand spikes that would strain the grid.

Importantly, these override percentages are far below the threshold where RTP would
dominate an AI-ToU tariff, according to a theoretical model we developed to quantify the
conditions under which AI managed charging (with overrides) has welfare dominance
over RTP. This is even true when the Al algorithm only controls 25% of the household’s
energy demand (roughly the amount of energy from EV charging in our sample). More-
over, the majority of overrides do not occur during the peak time. These empirical and
theoretical findings suggest that AI may be the best feasible option in the presence of at-
tention constraints and other real frictions. In our theoretical model comparing welfare

under Al-managed and non-managed tariffs, the override rate is a sufficient statistic for

5 According to informal estimates shared by Octopus Energy staff via personal communication, 60-70% of EV own-
ers were likely compatible with IO Go in 2024, based on available EV and charger integrations.
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welfare ordering: when the override rate is sufficiently low, the managed tariff dominates

all alternatives, including RTP.

Third, using treatment assignment as an instrument for tariff adoption, we estimated
that AI managed charging reduced household peak-period electricity consumption by
42%, with the entirety of that load shifted to overnight off-peak hours. This change in
peak demand takes their consumption down to similar levels as non-EV users. There was
no overall change in total electricity use, indicating that the program induced temporal
load shifting rather than increased consumption. This shifting was similar across all of
the randomized encouragement groups (email, low incentive, high incentive, and high
incentive plus cost to override). The overall electricity demand through the charger was
equivalent to around 7,500 vehicle miles traveled per year, which is in line with the UK

average.

Fourth, the Al appeared to enhance responsiveness to wholesale electricity prices be-
yond the effects of the peak to off-peak shifting. We examined consumption patterns of
trial participants who signed up to the AI tariff versus those who signed up to a similar
ToU pricing regime but with no AI management of charging (often due to technical com-
patibility issues that meant they could not sign up to the AI tariff). Comparing the two
groups, we found that participants who signed up to IO Go exhibited higher elasticity
with respect to wholesale electricity prices during peak evening and off-peak overnight
hours, whereas daytime responsiveness is similar across groups. While we cannot inter-
pret these differences causally due to non-random assignment, the results suggest that
the AI managed scheduling in IO Go helps shift consumption away from high system
prices within periods of the day, i.e., above and beyond between-period shifting that a

static ToU tariff is designed to achieve.

Fifth, DiD estimates were smaller than the experimental estimates. We believe this
difference was due to differing samples. While both the experimental and DiD approaches
reveal similar directional patterns of load shifting, the experimental instrumental vari-
ables estimates indicated a 42% reduction in peak-period consumption, compared to just
8% in the DiD estimates. An important contributor to this gap is that many customers in
the DiD sample were already on time-of-use tariffs before adopting IO Go, leaving them
with less potential for further consumption change. After reweighting the DiD sample
to match the experimental group on prior tariff type, the estimated peak reduction rises
to 22%: narrowing, but not eliminating, the gap. This weaker peak effect is compen-

sated for by a decline in daytime, non-peak consumption. We interpret these findings
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as evidence that compositional differences between self-selected IO Go adopters and our
RCT sample explain much of the discrepancy, with voluntary adopters exhibiting higher
baseline flexibility and thus smaller observable peak reductions. We hypothesize that the
intraday differences in impacts reflect greater daytime flexibility among the self-selected

participants in the DiD sample from smart technology.

Sixth, we estimated the consumer, producer, grid, and social welfare benefits of this
Al managed charging tariff. The reallocation of electricity use to periods with substan-
tially lower rates reduced trial participants’ bills by £343 per year, an estimated 18%
reduction in cost per kWh. When benchmarked against the retailer’s standard flat tar-
iff, the estimated savings rise to roughly £650 per year.® The electricity retailer experi-
enced similar savings in procurement costs (which include wholesale power prices and
non-energy charges such as transmission and distribution fees), implying near-complete
pass-through of savings to participants, at least during our study period. Using 2050
grid projections, we further estimated that if all EV households adopted this tariff, the
resulting load shifting would flatten the load-duration curve, lowering peaks and raising
off-peak demand, thereby improving efficiency and reducing the need to build at least

five to six large nuclear power stations to meet future electricity demand.

The impact on CO2e emissions were substantial.” The resource cost per tonne of
CO2e abated was extremely low (negative) for consumers. We estimated a resource cost
of —£888 per tonne, an order of magnitude lower than that of the next-best technology
(Gillingham and Stock, 2018; Gosnell et al., 2020; Hahn et al., 2024).

Lastly, we leveraged the fact that this AI managed tariff has also been deployed in
several other markets, including the US, Spain, and Germany, to assess its cross-market
efficiency. We used detailed data on charging behavior, household electricity consump-
tion, overrides, and both consumer and market prices. In these markets, we found similar
plug-in and override behavior in several other markets, including the UK, US, Germany,
and Spain, implying the potential for comparable demand and welfare effects. Given that
the override rate is a sufficient statistic for a welfare in our theoretical model, we show the

mechanism-level scalability and welfare dominance of this tariff across many countries.

The counterfactual for our £343 estimate is the average bill of the control group during the experimental period,
which includes many tariffs. The £650 figure uses our estimated consumption treatment effects relative to the bill
under the standard flat tariff, which most customers in our trial sample were on prior to the experiment.

7Electricity-related emissions are generally lowest overnight, when wind and nuclear generation dominate, and
highest during the evening peak, when falling solar output and rising demand bring more gas generation online.



1.2 Contribution to the existing literature

Our study contributes to three strands of research: tariff switching and dynamic pric-

ing, electric-vehicle (EV) charging, and the economics of Al.

Tariff switching and dynamic pricing. Closest to our work are randomized experi-
ments by Fowlie et al. (2021) and Ito et al. (2023), who studied consumer adoption and
demand under time-varying tariffs. They showed that incentives increased switching,
that adoption correlated with price elasticity, and that opt-in vs. opt-out designs affected
persistence. Yet both examined ex-ante fixed rates, without uncertainty or automation,
and thus could not address the challenges of RTP or Al managed tariffs that optimize
around spot prices (with the exception of critical peak pricing). In our setting, once con-
sumers enrolled and revealed their state of charge and ready by preferences, all intraday
adjustments were automated, minimizing behavioral effort and thus selection on their
elasticity, which is why our study differs from Einav et al. (2013) and Ito et al. (2023).

Three related other studies speak to automation in similar contexts. Blonz et al. (2025)
examined the impact of automated temperature set-points through a smart thermostat in
an opt-in field experiment with ToU pricing. While their system had no AI component
(the automation was deterministic, and did not update over time or use machine learn-
ing), they convincingly demonstrated the benefits of the automation (raising temperature
set-points in the summer during the peak price part of the day) and low override rates.
Our findings of "set and forget" (via automation) having similarly low overrides support
their results. Bailey et al. (2024) and Khanna et al. (2024) studied utility-managed de-
mand response in opt-in experiments, again without AI. We extended these important
contributions by leveraging a natural field experiment with Al deployed in a scaled-up

market product.

Beyond these related studies, a broader literature on tariff switching and design doc-
uments significant inertia and inattention in energy markets, often attributed to high
switching costs (Hortagsu et al., 2017; Byrne et al., 2022; Gravert, 2024; Garcia-Osipenko
et al., 2025). Our study is the first, to the best of our knowledge, to estimate switching
costs in a natural field experiment by randomizing financial incentives for tariff switch-
ing. We found a price elasticity of switching to an Al tariff to be -0.143, suggesting the

importance of switching costs.’

8Residual factors such as control loss or privacy concerns may still influence adoption (Bailey and Axsen, 2015;
Moser, 2017).

9Prior work in health, telecommunications, and energy has typically estimated switching elasticities using structural
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We also developed a theoretical model extending Joskow and Tirole (2006b), who ana-
lyzed optimal tariff menus under competition. We added an Al managed option with par-
tial non-compliance (“overrides”) and derived a closed-form crossover rate at which au-
tomation yields higher welfare than RTP even with small transaction costs. This embeds
behavioral frictions — attention costs, uncertainty, limited compliance — into classical
welfare rankings, complementing Borenstein (2005b), who assumed full responsiveness.
Our framework linked automation quality and override behavior to welfare outcomes,

bridging idealized RTP theory with friction-aware retail models.!"

EV charging. Our work also extends empirical studies on managed and flexible EV
charging (Burkhardt et al., 2023; Garg et al., 2024; La Nauze et al., 2024; Bailey, Brown,
Shaffer and Wolak, 2025; Bernard et al., 2025). Prior pilots examined manual or deter-
ministic charging responses, often in small or selected samples. Bailey, Brown, Myers,
Shaffer and Wolak (2025) compared managed vs. ToU charging in a framed experiment,
and Burkhardt et al. (2023) tested off-peak price incentives, both without Al and at lim-
ited scale. We studied the world’s largest AI managed EV tariff within a natural field
experiment, embedding automation, randomization, and market realism. This enabled

the first causal evidence on large-scale Al coordination of household electricity demand.

Our findings also inform the broader EV policy literature on infrastructure, adoption,
and system costs (Zhou and Li, 2018; Archsmith et al., 2022; Powell et al., 2022; Rapson
and Muehlegger, 2023b,a; Heid et al., 2024; Turk et al., 2024; Asensio et al., 2025; Dorsey
et al., 2025; Gillingham et al., 2025). By showing that Al scheduling lowered consumer
bills, reduced grid system peaks, and shifted electricity load to low-emission periods, we
demonstrated a key pathway through which managed charging can cut grid investment

needs and raise welfare.

Mechanism design and Al. Finally, the paper contributes to the mechanism design
literature by showing how a simple, algorithmic mechanism can implement efficient co-
ordination with minimal information requirements. Under the Intelligent Octopus tar-
iff, users reveal only two primitives — their desired state of charge and ready-by time
— while the algorithm optimizes charging schedules subject to these constraints. This
restricted-revelation structure enables efficient load shifting without the need for com-

plex preference elicitation or strategic communication. In fact, while there is much het-

models or by experimentally varying the information provided about costs and benefits across options.

105ee also Holland and Mansur (2006); Poletti and Wright (2020); Imelda et al. (2024) for quantitative simulations
of RTP gains and Borenstein (2007); Allcott (2011); Fabra et al. (2021); Pébereau and Remmy (2023) for evidence of
adoption barriers.



erogeneity in those two primitives from the samples, the effect of the tariff is similar

across all types.

Conceptually, the design parallels the emphasis by Budish (2011) on simple, approxi-
mately efficient mechanisms and extends recent work in dynamic and algorithmic mecha-
nism design (Athey and Segal, 2013; Parkes and Wellman, 2015; Bergemann and Valimaki,
2019). In doing so, the field experiment demonstrates how Al managed tariffs can serve
as practical, data-driven mechanisms that align private incentives with system-level effi-
ciency. The Al optimization substitutes for strategic communication: incentive alignment
is embedded in the system’s architecture, not in agents’ reasoning. The experiment thus
offers large-scale evidence that automated, data-driven mechanisms can deliver efficiency
and incentive compatibility through simple user inputs. These results support specula-
tion that AI agents will better satisfy the rationality assumptions underlying mechanism

design frameworks than human agents (Varian, 1995; Bergemann and Valimaki, 2019).

We also contribute to the emerging literature on Al’s causal effects on economic out-
comes (Agarwal et al., 2023; Brynjolfsson et al., 2025; Bjorkegren et al., 2025).!1 Although
some have highlighted the challenges of identifying AI’s effects in labor markets (Bryn-
jolfsson et al., 2019; Frank et al., 2019), these identification barriers are less pronounced
in energy and environmental contexts. Al often lowers the cost of effort, making it dif-
ficult to disentangle AI from price effects and isolate its unique impact. This matters
because reducing effort, through tools, automation, or process improvements, has long
influenced labor markets, yet existing studies rarely separate this effect from Al itself. In
our setting, the reduction in effort occurs on the retailer side in responding to wholesale
prices or ancillary markets, while consumer prices and effort remain unaffected by the

Al’s optimization.

The paper is structured as follows: Section 2 provides an overview of the natural field
experiment, including the sampling, the intervention (i.e., the AI-EV tariff), the random-
ized encouragement, the randomization procedure, and available data. Section 3 devel-
ops the demand estimates from the field experiment. Section 4 complements Section 3
with a difference-in-difference analysis of the intervention, and attempts to reconcile with
the experimental estimates. Section 5 presents the welfare estimates of the intervention
and the randomized encouragement, Section 6 presents descriptive statistics of customer

behavior on an Al managed tariff in three other countries, and finally, Section 7 concludes.

1 This complements work showing that Al data centers could impact on energy flexibility and thus emissions (Knittel
etal., 2025).



2 Experimental design

This section describes the design and implementation of our natural field experiment.
We begin by detailing the eligibility criteria and sampling strategy used to construct the
study population. We then describe the AI managed charging tariff and its underlying
automation, before outlining the randomized encouragement design used to induce up-
take. We conclude by summarizing our randomization procedure and the data used in

the analysis.

2.1 Eligibility into the field experiment

We implemented the experiment in partnership with Octopus Energy, the United
Kingdom’s largest electricity supplier. We defined the target population as residential
customers satisfying three criteria: (i) they were likely to own an EV; (ii) as of December
2023, they had only ever subscribed to conventional flat-rate or variable-rate tariffs — that
is, they had no prior engagement with managed tariffs; and (iii) they resided in houses
(rather than apartments/flats or mobile homes), which are likely suitable for at-home

charging.

As we lacked administrative records on EV ownership, we inferred it using household
electricity consumption data from smart meters. Following internal technical guidance,
we defined “suspected charging events” as four to twelve consecutive half-hourly inter-
vals with half-hourly total usage exceeding 3.5 kWh, consistent with Level 2 (7 kW) home
charging. We averaged the number of such events per week over a ten-week window in
summer 2023 (July-August),!? and classified as “suspected EV owners” those customers
with between 0.5 and 4 events per week (these thresholds were chosen in consultation
with Octopus Energy colleagues with subject matter expertise on typical EV charging

frequency among customers).!3

In summary, our sampling strategy yielded 13,233 trial participants. In this sample,

86% were on flat-price tariffs. Given that most customers in the UK are on flat tariffs,

12We used the summer for this approach as there was less likely to be heat pumps or any other electric heating
blocking the EV charging signal.

13We are unable to provide formal performance statistics for the EV detection algorithm because we do not have
ground-truth data on customers’ low-carbon technology ownership. However, after the first round of encouragements
in February 2024, we surveyed 305 customers who received an encouragement but had not signed up for Intelligent
Octopus Go. We received 73 responses. Of these respondents, only four reported not owning an EV (5%). This high
proportion of true EV owners among those we predicted to have an EV suggests that the detection algorithm likely had
a low Type I error rate (i.e., few false positives).
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our trial population is likely to resemble the broader set of prospective adopters of man-
aged charging technologies along this dimension. This contrasts with early adopters of
IO Go, who were typically more engaged, more technologically inclined, and potentially
more environmentally motivated than the mainstream EV-owning population.!* In other
words, unlike early adopters already enrolled in smart tariffs, we believe our trial par-
ticipants were more similar to the broader population of potential adopters of managed

charging technologies.!>

2.2 The intervention: Intelligent Octopus (10) Go

IO Go is a residential electricity tariff that combines time-of-use pricing with AI man-
agement of automated EV charging. Through the Octopus app, customers set a target
battery level (i.e., state of charge) and departure time (i.e., ready by time); Octopus
then schedules charging to meet those targets (Figure 1a). In exchange, IO Go pro-
vides a favorable electricity rate of £0.07/kWh during a fixed six-hour off-peak window
(23:30-05:30).' This rate applies not only to EV charging but to all household consump-
tion during that period. Charging that occurs outside the scheduled off-peak window is
still billed at the off-peak rate if it is initiated by the AI automation. Customers retain the
ability to manually override this schedule via a mobile app (“bump charging”, shown in
Figure 1b, or sustained override shown in Figure 1c). The overriding is easy and costless
— customers open the app, go to the tab in Figure 1a, and press the “Bump Charge” but-
ton. When customers charge outside of the schedule through overriding, it is billed at
the higher rate so there is a financial cost to overriding. The applicable tariff schedule for

2024 is shown in Figure 2.

Beyond its engineering implementation, the tariff design embodies a core principle
from mechanism design. It functions as a large-scale restricted-revelation mechanism.
Each customer specifies two primitives — a ready-by time and a desired state of charge
— which together summarize individual flexibility (Figure 1a). With these constraints,
the algorithm allocates charging across time to minimize system costs while meeting user
needs. No detailed reporting of preferences, utilities, or price sensitivities is required. In

mechanism-design terms, it is a simple direct mechanism defined over a coarse message

14 According to a recent report, 91% of customers are on flat-rate tariffs in the UK.

I5Given that they had adopted their EV for a few months before we contacted them, we expect response rates would
be slightly lower than if we contacted them immediately after buying their EV (Nicolson et al., 2017). However, that
would raise difficult identification issues since we would not have a clear baseline time period.

160ctopus Energy’s standard tariff Flexible Octopus charges a flat rate of approximately £0.22-£0.27 per kWh
throughout the day, depending on region, as shown in Figure 2.
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Figure 1: IO Go Charging Controls via Mobile App
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Notes: Example screens from the Intelligent Octopus Go mobile application. Panel (a) shows the Al-generated charging
schedule, while panels (b) and (c) depict temporary and sustained user overrides of managed charging.

space, yet it achieves near-efficient outcomes because the Al optimizes using observed de-
mand and wholesale price data. The design echoes the notion of approximate competitive
equilibrium from Budish (2011).

The IO Go tariff uses Al to generate charging schedules based on prices in many mar-
kets. The first is wholesale electricity prices, adapted to the market structure of each re-
gion where it is offered. In Great Britain, where wholesale prices are national, schedules
are optimized using a blend of day-ahead and intraday wholesale prices, with intraday
data available on a rolling-hourly basis. In most European markets, the optimization is
updated daily based on day-ahead wholesale prices, while in the United States, the al-
gorithm relies on forecasts of real-time prices. The optimization window can extend up
to 24 hours into the future, accommodating consumer-specific “ready-by” times. These
may require intraday charging plans — such as afternoon readiness — or more commonly,

overnight charging plans, particularly in Great Britain.

Following the baseline price-driven optimization, the system supports a secondary ad-
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Figure 2: Tariff Rates

Unit Rate
(p/kWh)
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Notes: This figure shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30-05:30, dark purple) and the peak daytime period (05:30-23:30, light purple). For comparison, we also include
the standard non-time-varying tariff (black) from Octopus Energy, the main counterfactual tariff.

justment layer for participation in ancillary service markets and real-time grid-balancing
operations. In this mode, the EV portfolio is managed as a coordinated fleet with portfolio-
level volume targets, allowing for dynamic adjustment of charging schedules in response
to market trades or direct requests from system operators. This enables dual operational
modes: price-only optimization, in which vehicles charge during the lowest-cost peri-
ods (often aligning with high renewable output), and price-plus-volume optimization,
in which charging is redistributed to meet specific aggregate energy delivery constraints

while maintaining cost efficiency.

The optimization engine integrates two complementary computational approaches:
classical linear programming and machine learning—based forecasting (the AI currently
uses no large language models to predict or optimize). The linear programming com-
ponent solves for the cost-minimizing charging schedule subject to technical and oper-
ational constraints, such as maximum charging rates, user readiness requirements, and
fleet-wide volume limits. The machine learning component enhances this process by pro-
viding predictive inputs to the optimization, including forecasts of EV availability (based
on historical connection patterns), expected charging requirements for vehicles not yet
connected, and local load predictions, including home consumption and on-site solar
generation when applicable. These forecasts are updated in real time, enabling the op-

timization to adapt to changing conditions. A diagram outlining the structure of the Al
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scheduling framework is shown in Figure 3.

From an efficiency point of view, a key advantage of IO Go’s automation is to mitigate
charging demand inefficiencies at the consumer level due to human error, bounded ra-
tionality, or rational inattention. In environments where consumers are either rationally
inattentive or lack the sophistication to respond optimally to high-frequency price sig-
nals, automated optimization under IO Go may yield strictly higher social welfare (from
a net benefits or resource cost-effectiveness point of view) than consumer-managed RTP

(see Appendix G for our predictions).

In addition, the British electricity system — like many others — includes multiple
ancillary and flexibility markets, with overlapping mechanisms for valuing flexibility.
Market participants respond not only to wholesale price signals but also to a range of net-
work, balancing, and capacity markets, including the Capacity Market, Balancing Mecha-
nism, and various frequency response and distribution network services. This complexity
means that optimizing against a single real-time or day-ahead wholesale price would fail
to capture value available in other markets. IO Go’s automation enables the retailer to

allocate charging efficiently across these interacting price signals.

2.3 The randomized encouragement design

The trial participants in our sample were randomized into one of five arms:

1. Control group (n = 2,205): no outreach

2. Email (n = 7,720): encouragement email with no financial incentives for signing up
to I0 Go

3. Email + £5/month incentive to sign up (n = 1,101): encouragement email with offer

of £5/month for three months for signing up to IO Go

4. Email + £50/month incentive to sign up (n = 1,102): encouragement email with

offer of £50/month for three months for signing up to IO Go

5. Email + £50/month incentive to sign up (n = 1,105), no bump charging (overriding):
encouragement email with offer of £50/month for three months for signing up to IO
Go. Additionally, they pay £2 of their incentive for each day they “bump charged"

— that is, overrode the Al control at least once per day. This was designed to make

14



Figure 3: Al Managed Scheduling Framework

Charging schedule —
Overall fleet load
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- Local load predictions, including driven by weather and other hedges

home consumption and on-site and/or new grid

solar generation when applicable conditions

Notes: The optimization is implemented by Kraken Technologies, which ingests both demand-side inputs (customer
requirements, plug-in behavior, and local load predictions) and supply-side inputs provided by Octopus Energy. The
supply side inputs can be complex. Distribution Network Operators procure local flexibility to manage constraints
and reliability. Sustain services address long-term capacity needs, Secure services manage predictable network peaks,
Dynamic services respond to real-time constraints, and Restore services support recovery after faults. At the national
level, NESO procures ancillary and balancing services to maintain system stability. Frequency response maintains
50 Hz operation through Dynamic Containment, Dynamic Moderation, and Dynamic Regulation. Reserve services
provide backup capacity, split into Quick and Slow Reserve, while the Balancing Mechanism matches supply and
demand in real time. Technical services include Black Start, inertia, reactive power, short-circuit level, and constraint
management. The Capacity Market provides availability payments for system stress events via T-1 (one year ahead) and
T-4 (four years ahead) auctions. Wholesale markets provide energy price signals across various timeframes. Day-ahead
markets allow trading for the following day. Intraday markets enable near-real-time adjustments, while imbalance
pricing penalizes deviations from contracted positions. Peak-related levies — including the Capacity Market levy, Dis-
tribution Use of System (DUoS), and Transmission Network Use of System (TNUo0S) charges — further incentivize load
shifting and peak reduction. Not all of these markets and signals are directly acted on; they are noted to illustrate the
range of supply-side inputs considered in optimizing demand. Octopus Energy is responsible for forecasting wholesale
and ancillary market prices and other market conditions, while Kraken integrates these inputs to generate charging
schedules subject to user constraints and technical limits.
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overriding even more costly and thus understand trial participants’ willingness to

tolerate even less control over their charging schedule.

Each treatment arm received a single encouragement email from Octopus Energy’s
marketing team, reproduced in Appendix D.1. These messages included a prominent
call to action, a theoretical £700/year savings estimate (based on historical usage mod-
eling), and tariff-specific details, with minor variations in content to reflect the assigned
incentive level. The “no bump” group was explicitly informed that their monthly pay-
ment would be reduced by £2 for each day they initiated a manual override of managed

charging.

Encouragement emails were dispatched in two waves: the first on February 15, 2024,
and the second on March 20, 2024. Incentive payments were credited to trial participants’
Octopus Energy account balances, accruing daily over a 90-day period conditional on
maintaining an active IO Go contract. In effect, this structure functioned as a discount on
the customer’s electricity bill, lowering the effective cost of household energy use during
the incentive window. This setup was very natural and in-line with how the retailer

administers incentives in other programs.

Note that it was required by our implementing partner, Octopus Energy, that our en-
couragement emails for IO Go inform customers that Octopus Energy offers other tariffs
that may have better met their needs. Importantly, IO Go is not compatible with all
chargers or vehicles; for these circumstances, Octopus Energy offers an alternative EV
tariff: Octopus Go, a time-of-use EV tariff offering a fixed off-peak rate for electricity. The
major differences from Intelligent Octopus Go are: (1) it offers one fewer hour of cheap
overnight rate (00:30-5:30, instead of IO Go which is 23:30-5:30) (2) its off-peak rate is
higher than 10 Go’s (£0.085/kWh, as compared to £0.07/kWh for IO Go; for exact rates,
see Figure Alb), and (3) Octopus Go does not incorporate Al managed charging and
thus has no bonus off-peak windows. This creates the possibility that encouragements
influenced uptake of tariffs other than 10 Go, posing a potential channel for exclusion

restriction violations. We test and discuss this in Section 3.1.

2.3.1 Hypotheses

The design of the field experiment allowed us to test two main pre-specified hypotheses:

1. Increasing the incentive payment for adopting IO Go will increase actual adoption.
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2. Adoption of 10 Go tariff will shift electricity consumption from peak (16:30-20:30)
to off-peak (23:30-5:30) hours.

These two hypotheses are not from the same family and thus we did not correct for mul-
tiple hypothesis testing across them. However, we will go into some of the testable pre-

dictions from the design below.

2.4 Tying the Experiment to a Theoretical Framework

From a welfare analysis perspective, we expect the IO Go tariff to generate distinct
welfare outcomes relative to real-time pricing (RTP), depending on the scope for opti-
mization and the behavioral frictions consumers face. IO Go can outperform RTP when
it leverages price signals from multiple markets, such as ancillary service opportunities

1.17 Our theoretical model focuses on be-

that are typically excluded from the RTP signa
havioral frictions rather than multi-market optimization; however, we acknowledge that
both are important drivers of the extent to which automation might or might not outper-

form RTP.

We consider EV charging under four tariff regimes: flat (the baseline counterfactual
our sample begins on), time-of-use (ToU) without automation, RTP without automation,
and the Al-assisted tariff “IO Go” with possible household overrides (“bump charging”).
Households require a given amount of energy by a deadline, have specific plug-in hours,
and face inconvenience costs when charging at less-preferred times. The retailer’s total
cost depends on total load and wholesale prices, net of ancillary-service revenues. Under
IO Go, charging is centrally scheduled to minimize these costs; under RTP, households
self-schedule but face attention costs and bill-volatility risk. ToU households respond only

to fixed peak/off-peak prices.

We present the full model and formal predictions in Appendix G, which builds upon
Borenstein (20054,b); Joskow and Tirole (2006a,b). Here, we summarize the key intuition:
automation under IO Go will generally increase welfare relative to RTP when users face
attention or risk costs. However, under IO Go, households may override the optimized

schedule when their immediate value from charging exceeds the deferred benefit net of

17In principle, RTP could incorporate such signals, but doing so would require a richer and less transparent price
vector, as well as greater computational and behavioral demands on consumers. IO Go may instead yield lower welfare
than RTP when intertemporal optimization across days offers larger gains than within-day shifting, or if users system-
atically fail to plug in their EVs when charging would be most cost-effective. However, evidence from RTP studies
suggests that cross-day shifting is rare, and our data show no systematic plug-in failures.
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a hassle cost. Such overrides can increase user utility but raise system costs if they shift
load into expensive or high-emission hours, thereby narrowing the welfare gap between
IO and RTP.

Let WI© and WRTP denote per-EV welfare without overrides, and define the baseline

welfare gap:
AW, = WO - wRTP, (1)

If overrides occur at rate /3 with per-override welfare loss A, total 10 welfare becomes:
WIO+O — WIO _/;/\ (2)
We approximate A empirically as:

izppeak'Aaeff'qof (3)

where ppeai is the probability that an override lands in a peak period, Al is the peak-
off-peak price spread (£/kWh), and ¢© is the mean energy shifted per override.

Lemma. If AW, >0 and A > 0, the override rate at which IO welfare equals RTP

welfare is:
g AW

, (4)

This crossover override rate * is a sufficient statistic for understanding the relative
efficiency of IO Go and RTP. In a stylized UK calibration with RTP price elasticity of
demand ¢ = —0.2 (consistent with or above values in the literature), and that EV demand
represents roughly 25% of total electricity load, we obtain f* ~ 0.33 overrides per day
at moderate attention costs. Higher attention costs or lower RTP elasticities increase this
threshold. Appendix G.1 provides the full calibration for the UK and the other IO Go

markets.

Our model builds on strands of the energy economics and operations literature that
model demand under dynamic electricity pricing. Threshold-style decision rules, in
which users act only when net private benefits exceed a frictional cost, appear in online
EV charging optimization under RTP (Yi et al., 2019), where a dissatisfaction penalty
plays a role similar to our hassle cost ¢;. Menu-based contract designs for EV charg-
ing (Ghosh and Aggarwal, 2017) and joint welfare-maximizing scheduling algorithms
(Huang et al., 2023) adopt multi-stage decision structures that parallel our two-stage ex-

tension, in which households first adopt a tariff and then choose whether to override
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automation.

Our framework also relates to the generalized Roy model of Ito et al. (2023), who study
voluntary take-up of dynamic pricing plans using marginal treatment effects to character-
ize heterogeneity in welfare gains from adoption. In their setting, the key policy-relevant
object is the optimal adoption cutoff; in ours, it is the crossover override rate at which an Al
managed schedule ceases to dominate RTP in welfare. Both identify a threshold along a
behavioral margin — adoption or overrides — at which the welfare ranking of competing

regimes changes.!®

Relative to this literature, our contribution is to embed such a behavioral threshold
in an Al optimization framework for EV charging, explicitly linking override behavior
to aggregate welfare outcomes and producing sharp, testable predictions for our experi-
mental design. Based on our parameterization — with a price elasticity of demand under
RTP of ¢ = —0.2 and moderate attention costs — our simulations imply that an average
override rate below * ~ 0.33 per day would make the Al tariff welfare-dominant relative
to RTP.

2.5 Randomization

Random assignment was implemented using a block randomization procedure to im-
prove covariate balance across trial arms (Moore and Schnakenberg, 2023). Prior to as-
signment, trial participants were grouped into 1,109 blocks of twelve customers based
on Mahalanobis distance calculated over a set of pre-encouragement variables predictive
of EV ownership and electricity consumption. These included historical electricity us-
age, tenure as a customer with Octopus Energy, and past engagement with smart tariff
onboarding. Within each block, two trial participants were assigned to the pure con-
trol group, seven to the £0/month encouragement group, and one each to the £5/month,
£50/month, and £50/month (no bump) groups. This distribution across treatment arms

reflected a balance between budget constraints and the desire to offer realistic incentive

18Joskow and Tirole (2006b) present a general model of retail electricity competition in which tariff menus are de-
signed to elicit efficient real-time demand response, subject to transaction and metering frictions. In their frame-
work, sufficiently low frictions imply that high-granularity pricing schemes such as RTP dominate coarser alternatives.
Borenstein (2005b) similarly show that RTP improves allocative and investment efficiency relative to flat or ToU rates
in competitive markets, assuming full compliance and ignoring behavioral frictions. Our model extends these frame-
works in two key ways: (i) we introduce an Al managed regime (I0) that automates price response, removing household
attention costs but allowing partial non-compliance through overrides; and (ii) we model overrides as a distinct behav-
ioral margin with its own welfare implications. This richer friction structure implies that IO Go can outperform RTP

even when RTP’s transaction costs are small, provided override rates remain below the crossover threshold ﬁ*, and
conversely that high override rates can reverse the ranking — an effect absent from the original Joskow-Tirole and
Borenstein formulations.
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levels, on the one hand, with the goal of maximizing power (by increasing sign-up to IO
Go), on the other. Randomization was performed separately within each of the United
Kingdom’s 14 electricity distribution regions to ensure geographic stratification. This

procedure yielded excellent covariate balance across trial arms (Table A1, and Figure A2).

In our pre-analysis plan, we calculated the minimum detectable LATE when using the
encouragements as instruments for take-up of IO Go, and performed power calculations
separately for each encouragement-specific instrument. We found that to achieve 80%

power required detecting a 30-40% reduction in peak-period consumption.

We used the randomized encouragement to estimate the intent-to-treat effect (ITT) of
receiving the encouragement on take-up of Al managed charging, and then used the en-
couragement as an instrument to identify the local average treatment effect (LATE) of Al
managed charging on outcomes. To identify the ITT effect, we satisfied the three standard
requirements for a valid randomized assignment mechanism: probabilistic assignment,

individualistic assignment, and unconfoundedness.

First, every participant had a positive probability of being assigned to any of the en-
couragement groups or control (probabilistic assignment). Second, assignment depended
only on pre-encouragement covariates and is therefore independent of other participants’
potential outcomes (individualism). Finally, encouragement assignment was indepen-

dent of potential outcomes (unconfoundedness).

In addition to having used an assignment mechanism that ensures unbiased estima-
tion, the study benefited from high observability. We tracked each participant’s electricity
consumption before, during, and after tariff adoption. Data loss only occurred when cus-
tomers left Octopus or stopped using smart meters. Twelve months after encouragement,
97% of participants still provided usable smart-meter readings, with attrition rates bal-
anced between the treatment and control groups. Finally, there was no selection into the
sample and no notification of randomization or an experiment to the sample, limiting
any Hawthorne or John Henry effects. Thus, we can call our experiment a natural field

experiment (Harrison and List, 2004).

2.6 Data

Our analysis drew on high-frequency administrative data from Octopus Energy, Great
Britain’s largest electricity supplier, with personal identifiers removed. We focused on

two primary outcomes for our two hypotheses: (1) take-up of the IO Go tariff, measured
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as a binary indicator for whether a trial participant held an active IO Go contract dur-
ing week t; and (2) electricity demand, observed at half-hourly resolution and expressed
in kilowatt-hours (kWh). We aggregated consumption to the week x hour-of-day level.
Electricity demand includes both EV-related and non-EV household load; concretely, we
summed smart-meter readings (which measure consumption from all appliances, not just
the EV charger) across all meter point administration numbers linked to each trial par-
ticipant account. These outcomes are observed from January 1, 2024 through March 31,
2025.1% All of these decisions were in our pre-analysis plan (AEARCTR-0013037).

In Figure 4, we show the average hourly electricity consumption in the pre-encouragement
period (i.e., January 2024), showing an expected evening peak beginning around 16:30,
coinciding with the system peak in Great Britain when wholesale prices, network con-
gestion, and emissions intensity are typically highest. Baseline electricity consumption
for our trial participants was much higher than that of a random sample of 5,000 other
Octopus Energy customers with smart meters, but without EVs. Notably, we also observe
substantial overnight consumption, consistent with EV charging demand. We believe this
is partly driven by plugging the EV after work in the evening and the default scheduling
behavior in common EV chargers, which sometimes pre-set charging to off-peak times.2°
Our intervention thus tests the additional impact of managed charging in a setting where

at least some users are already defaulted into off-peak charging schedules.

We focus our analysis on off-peak periods (23:30-05:30) and peak periods (16:30-
20:30), following our pre-registration. Off-peak periods correspond to IO Go’s hours of
cheap overnight rates. Peak hours capture the period of highest intensive domestic elec-
tricity consumption (Few et al., 2022). That said, it is worth noting that the definition
of “peak” and “off-peak” may change and themselves become more variable by day and

season in the coming years.

For experiment participants who adopted the 10 Go tariff, we also collected customer
settings and high-frequency telemetry on charging behavior. The settings include: (1)
the ready-by time, defined as the user-specified time by which the vehicle should be fully
or partially charged; and (2) the desired state of charge by that time. The telemetry

data include: (1) plug-in and unplug timestamps; (2) charging start and charging end

19 A meter point administration number (MPAN) is a unique ID for an electricity supply point (e.g, a house) in relation
to a specific area of the UK’s national electr1c1ty grid. Tariff-contracts and half-hourly measurements of electricity use
are tied to account identifiers via MPANSs. A single account can have multiple MPANs with different tariff agreements
that are simultaneously active.

20Since June 2022, the UK’s Electric Vehicles (Smart Charge Points) Regulations 2021 have required that all new private
EV chargers include a default charging mode set outside of peak hours (8-11am and 4-10pm), along with a randomized
delay function to reduce grid strain.
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Figure 4: Pre-Trial (January 2024) Hourly Consumption
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Notes: This figure shows average hourly electricity consumption across the sample in January 2024, prior to the start
of the trial. Trial participants are grouped by (1) those who later spent more than 50% of the trial period on Intel-
ligent Octopus Go or Octopus Go (2) those who remained on other tariffs, and (3) a random 20,000 sample of other
Octopus Energy customers. Shaded regions show the 95% confidence interval. Octopus Go is an alternative time-of-
use EV tariff designed for customers who either had hardware that was incompatible with IO Go or did not wish to
enroll in automation. Green shaded box indicates IO Go off-peak hours (23:30-05:30), when electricity is charged at
£0.07/kWh; all other hours are billed at the standard variable rate. Blue shaded box indicates typical system peak
hours (16:30-20:30), which are highlighted to show times of heightened grid stress.

timestamps; and (3) an indicator for whether the charge was automatically dispatched
by Octopus or manually overridden by the user. These data allowed us to reconstruct
intended charging preferences, actual charging demand, and deviations from automated

control.

We used additional administrative data at the daily level to estimate consumer and
supplier benefits. First, to measure benefits to consumers, we used administrative data
from Octopus Energy detailing each customer’s unit rate per kWh. Second, to estimate
benefits to the electricity supplier (in procurement cost savings), we used administrative
data on each customer’s wholesale energy costs, as well as non-energy costs, per settle-
ment period. Non-energy costs include Transmission Network Use of System (TNUoS)
and Distribution Use of System (DUoS) charges, capacity market payments, and policy
costs (such as charges supporting Contracts for Difference); some of these charges vary
by period of day (e.g., DU0S). This yields an imputed per-kWh cost that combines the

energy and non-energy costs of supplying electricity.

For an exploration of sub-group heterogeneity, we used area-level deprivation data
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from the UK-wide composite Index of Multiple Deprivation (IMD), small area measures
of relative deprivation across each of the United Kingdom. Areas were ranked from the
most deprived area (rank 1) to the least deprived area, based on income, employment,
education, health, crime, barriers to housing and services, and the living environment.
This index was constructed by Parsons and mySociety (2021) using methods from Abel
et al. (2016). This version harmonizes the constituent country-specific IMDs to a common
England-anchored scale, enabling deprivation comparisons across the UK’s statistical re-

porting areas.

To quantify CO,e impacts, we integrated data from WattTime, a U.S.-based nonprofit
that produces historical estimates of the marginal operating emissions rate, or the emis-
sions associated with the marginal change in load on the grid (WattTime, 2022). Watt-

Time data is available at five-minute intervals.

3 Experimental results

This section presents the main empirical findings from our field experiment. We begin
by documenting the impact of the encouragements on trial participant enrollment into
the Al managed EV charging tariff. We then examine how these changes in enrollment
influenced electricity consumption patterns, using both reduced-form and instrumental
variable approaches. Finally, we explore heterogeneity in treatment effects, user behavior
under the managed charging regime, and the added value of automation beyond con-
ventional time-of-use pricing. We followed our pre-analysis plan, but state where we
added or deviated away from it, why we did, and their implications for interpretation in

Appendix C.

3.1 Impact of encouragement on take-up of managed charging

We begin by estimating the effect of encouragement on trial participants’ likelihood
of adopting a managed EV-charging tariff. Specifically, we estimate the following linear

probability model for whether trial participant i is enrolled in the IO Go tariff in week ¢:

DI® =1+ 101 Z; + 1Py + 703(Z; X Piy) + py + py + €34 (5)
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Here, DZ-ItO is a binary indicator equal to one if trial participant 7 is on an IO Go contract
in week t. Z; is a set of four binary indicators capturing the encouragement assignment,
with the control group omitted as the reference category. P;; denotes whether participant
i is in the incentive period in week t, where the incentive period is the three months after
the start of the trial. We include fixed effects for randomization block p;, and calendar

week ;. Standard errors are clustered at the level of participant and week.

We observe an increase in take-up across all treatment groups, as shown in Table A2.
During the 90-day incentive window, the £0/Month and £5/Month groups each increased
the probability of take-up by approximately 3.4 percentage points, while the £50/Month
and £50/Month (No Bump) groups nearly doubled that effect, reaching 5.9 and 5.7 per-
centage points, respectively. Take-up in the control group is also rising over time, but
remains consistently lower than that observed in any encouragement arm (Figure A3).
At the end of the three-month incentivization period, take-up in the control group stood
at 2.7%, compared to 7.0% and 6.8% in the £0/Month and £5/Month groups, respec-
tively. The higher incentives resulted in the greatest adoption, with the £50/Month and
£50/Month (No Bump) groups reaching 9.3% and 9.2%.%!. We calculated a price elasticity
of 0.143 between the £0/Month and £50/Month groups using the arc elasticity formula,
which compares the change in take-up rates relative to the midpoint of both the take-up

and total incentive levels (£0 vs £150).

Across most encouragement arms, post-incentive enrollment remained stable. We
formally test this in Table A2, interacting the encouragement indicators and the post-
incentive period indicator in Table A2. The persistent retention after the incentive period
suggests that the initial encouragements had durable effects even in the absence of con-
tinued subsidy payments. Only the £50/Month (No Bump) experienced a statistically
significant drop of 1.6 percentage points after incentives ended. These results can be fur-
ther visualized in Figure 5, which shows estimates of Equation (5), split by month since
treatment. Retention dropped only in the group facing restrictions on manual overrides,
suggesting that managed charging is more likely to succeed when framed as a convenient
default rather than a rigid mandate. Encouragements that showcase consumer benefits

and flexibility can foster lasting adoption.

Importantly, take-up is mechanically constrained by compatibility: trial participants

need either their charger or EV to be supported by IO Go in order to enroll. For those

21 Tariff contracts can change at the level of the day, and thus there could be some worry that take-up analysis at the
weekly level could be biased. We run a robustness check of take-up at the daily level in Table A3, and find extremely
similar results to Table A2
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Figure 5: Impact of Encouragements on Take-up of Managed Charging Tariff (I0 Go)
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Notes: This figure plots the intention-to-treat effects of four email-based encouragements to adopt a AI managed charg-
ing tariff (Intelligent Octopus Go), split by month since receiving the email. The outcome is a binary indicator for
weekly use of the tariff. Each panel corresponds to a different encouragement group, varying in the level of offered
financial incentive. Shaded areas represent 90% (dark) and 95% (light) confidence intervals, with standard errors clus-
tered at the participant and week level. The dashed vertical line indicates the end of the 90-day incentive period.

who do not enroll and have an EV, we do not observe their vehicle or charger details,
and there is no comprehensive national data on EV and charger ownership to fill this
gap. Therefore, we are unable to estimate what proportion of trial participants actually

have compatible equipment.??

While IO Go is compatible with some of the most popular
home chargers (notably Ohme, MyEnergi/Zappi, and Hypervolt) this still represents only
a subset of the overall charger market. Compatibility via direct vehicle integration covers
several major EV brands, including Tesla, BMW, and VW, but again excludes some others.
Thus, the measured take-up rate represents a conservative estimate, limited by the extent

to which trial participants’ vehicles or chargers were compatible with 10 Go.?324

22In February 2024, we sent a survey to 305 trial participants who we had emailed as part of a pre-trial pilot (where
pilot trial participants are not in the sample of our main analyses). We received 68 responses. Among the 56 respon-
dents who expressed interest in signing up for 10 Go, 17 indicated that they had not done so due to device incompat-
ibility. We also show in Figure A5 the completion rate for participants who started signing up for IO Go but did not
complete onboarding. 23%, did not complete onboarding, and this appeared balanced across encouragement groups.
These individuals were not included in our take-up rate. This does not represent the overall incompatibility rate,
for two reasons. First, many customers likely checked whether their device was compatible before starting sign-up,
since Octopus provides a compatibility survey on the sign-up page. Second, there may also be other reasons beyond
compatibility for not completing onboarding, such as hassle factors associated with onboarding.

23See this link for compatibility with charge points. 10 Go is also compatible with several major EV brands.

24T further contextualize these take-up rates, the email open rate was 78% across all treatment groups, with most
opens occurring on the day following delivery and no qualitative variation across treatments (Figure A4). Noncompli-
ance with the intended IO Go take-up can thus be a result of not receiving or opening the encouragement email.
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As 10 Go is not yet compatible for all customers, Octopus Energy offers an alternative
EV tariff, Octopus Go, described in Section 2.3. As a result of our email-based encourage-
ments, we observed a nontrivial increase in take-up of Octopus Go; our speculation is that
this was driven by customers who owned devices incompatible with IO Go. Compared
to the effects on take-up of Intelligent Octopus Go, the impacts on Octopus Go adoption
were smaller — roughly 30% as large as those for the £0/Month and £5/Month groups,
and 8-11% as large as those for the £50/Month and £50/Month (No Bump) groups, al-
though the effects in the latter two groups are not statistically significant (Table A5). The
results suggest that, although uptake was concentrated among adopters of the managed-
charging product, the encouragements induced a more general shift toward tariffs de-
signed for EV needs more generally. This affects how we interpret the impacts of IO Go

on electricity consumption, which we will discuss more in Section 3.3.%°

Additionally, we tested for selection on levels — that is, whether adoption of 10 Go
could be explained by observable baseline characteristics, and in particular whether struc-
tural winners (those with higher expected bill savings) were more likely to enroll. We
estimated a logit regression of IO Go take-up on encouragement assignment, expected
structural winnings, and baseline covariates. We estimated four specifications that pro-
gressively increased flexibility: (1) a baseline model including only the incentive and
expected winnings; (2) an expanded model adding additional covariates; (3) a model
allowing for interactions among covariates; and (4) a final specification incorporating

nonparametric controls for expected savings.

We found no evidence of selection on levels: the coefficient on expected winnings was
small and statistically insignificant across all specifications. The results, presented as
marginal effects at the means of the covariates in Table A6, suggest that customers with
greater expected financial savings were not systematically more likely to adopt. There is
some evidence of selection on socioeconomic status — households in the second and third
terciles of the Index of Multiple Deprivation were more likely to enroll than those in the
most deprived tercile. In addition, customers who were already on a time-of-use tariff

prior to the trial were more likely to take up 10 Go.

The explanatory power of these models is extremely low: the squared correlation co-
efficients from the propensity-score estimates are near zero, and the estimated propen-

sity scores themselves occupy a narrow range. This limited variation implies that most

2510 Go has another rival tariff, Agile Octopus, which is a variable-rate tariff with prices linked to the day-ahead
wholesale cost of electricity. Take-up of Agile was quite low in our sample, and we found no effect of our encouragement
design on take-up of Agile Octopus.
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of the heterogeneity in IO Go take-up arose from unobserved factors rather than ob-
servable characteristics. Moreover, the propensity scores produced by the four models
are not highly correlated with one another, underscoring the instability of the selection
equations. As a result, we were unable to estimate marginal treatment effects to further

understand selection on slope and heterogeneous treatment effects.

3.2 Impact of encouragements on electricity consumption

We next assess whether encouragement-induced take-up translated into changes in
electricity consumption over the course of the day. Specifically, we estimated intention-
to-treat (ITT) effects of each encouragement arm on hourly electricity use (kWh) using

the following specification:

Yipg =+ BZi+ yXip+ Yo+ Y1 + €y (6)

where Y;;,; denotes mean electricity consumption for user i in hour h during week ¢, Z; is
a vector of binary indicators for each encouragement assignment, X;;, is user i’s average
pre-encouragement January 2024 consumption during hour 4,26 and 1, and ¢, are fixed
effects for block and week, respectively. Standard errors were clustered by user and by
week (Colin Cameron and Miller, 2015). To obtain hour-specific effects, we estimated
the model separately for each hour of the day. To analyze broader periods (i.e., peak
vs. off-peak), we grouped hours into the relevant period and ran the regression on those

aggregates.

In Figure 6, we present the ITT estimates by encouragement arm, split by hour-of-
day. All groups showed increased consumption during the overnight off-peak period
(23:30-05:30) and modest reductions during peak hours (16:30-20:30), consistent with
the tariff’s incentive to shift usage. Patterns are broadly similar across arms, although
the £0/Month and £50/Month (No Bump) treatments exhibit the largest declines in peak
consumption. When pooling all treatments into a single encouragement indicator and
estimating a regression over all hours within the specified peak and off-peak windows,
we find that receiving any encouragement increased off-peak consumption by 2% (0.019
kWh) and reduced peak consumption by 2% (-0.026 kWh), with no overall effect on total
usage (Table A4).

26This control variable was not specified in our pre-analysis plan, but we included it to enhance the precision of our
estimates.
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Figure 6: Impact of Encouragements on Hourly Electricity Consumption
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Notes: This figure shows intention-to-treat effects of four email-based encouragements on hourly electricity use (kWh),
using data from the 12 months after sending out the email (estimated using Equation (6), split by hour-of-day). The first
panel defines encouragement as a binary indicator for whether the user received any encouragement. Each subsequent
panel represents a separate encouragement arm with varying incentive levels. Lines depict 90% (dark) and 95% (light)
confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO Go off-peak
hours (23:30-05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard variable rate.
Blue shaded box indicates typical system peak hours (16:30-20:30), which are highlighted to show times of heightened
grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour to align with
IO Go’s pricing structure. Percentages represent treatment effects as a share of the control group trial participants who
are not on an EV tariff, for off-peak (23:30-05:30, green) and peak (16:30-20:30, blue) periods. Estimates come from
regressions pooling all hours in each window, as reported in Table A4 and defined in Equation (6).

3.3 Impact of managed charging on electricity consumption

To obtain the causal impact of adoption of the managed charging tariff on electric-
ity consumption, we used an instrumental variables estimation. In the first stage, we
instrumented tariff adoption with random assignment to any of the four email-based en-
couragements:

(7)

Dipt = 1o+ 101 Zi + Y Xipn + pp + Pt + €ipyt

where Z; is a binary indicator for whether the user received any encouragement. X
denotes average baseline consumption for user i in hour h. The specification includes

fixed effects for randomization block (y;) and calendar week ().
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As shown in Section 3.1, our encouragements increased adoption of both the managed-
charging tariff (IO Go) and the EV-oriented time-of-use alternative (Octopus Go). To pre-
serve the exclusion restriction, given that our instrument affects both products, we define

D;; as an indicator for take-up of either IO Go or Octopus Go.?”

In the second stage, we regressed hourly electricity use on predicted tariff status:

Yine = a+ BDips + ¥ Xin + Pp + s + €t (8)

where Yjj; is the mean daily consumption for user i in hour h of week ¢ (i.e., the mean
daily consumption at each hour, averaged across the week). Standard errors are clustered
at both the participant and week levels. We estimated this regression over the 12 months

after encouragement emails were sent out.

This approach is valid under standard instrumental variables (IV) assumptions: (i)
relevance — encouragement must increase adoption, which we confirm with strong first-
stage effects already shown in Table A2; (ii) independence — random assignment ensures
encouragement is uncorrelated with unobserved determinants of outcomes, which holds
given our assignment mechanism, as discussed in Section 2.5; (iii) exclusion — encour-
agement should affect electricity use only through tariff adoption, which we preserve by
pooling IO Go and Octopus Go as the treatment; and (iv) monotonicity — no customers
should be less likely to adopt when encouraged, which is plausible given the nature of
the intervention. Under these conditions, the IV estimates identify the Local Average
Treatment Effect (LATE): the causal effect of adoption for customers who take up a tariff

if they receive the encouragement.?®

We found that adoption of EV tariff significantly shifted consumption from peak to
off-peak hours. When we estimate Equation (8) over all hours within the specified peak
and off-peak windows, our main specification shows that households’ peak-period usage
fell by 42% (0.581 kWh average hourly reduction), while their off-peak usage rose by 50%
(0.481 kWh average hourly increase). This is a substantial reallocation of demand rather
than an increase in overall consumption. Consistent with this interpretation, Table A9

reports no change in total electricity use. This load shifting pattern is further illustrated

27This deviates from our pre-analysis plan, reflecting our uncertainty at the outset of the trial about whether we
would face this exclusion restriction violation. However, we find the coefficients are similar whether we include or not
the Octopus Go customers into the D;; indicator.

28The LATE identifies the effect of IO Go for compliers, not the population average treatment effect. Our random-
ized encouragement generates exogenous variation in assignment, but treatment can only be estimated for those who
comply with encouragement. Compliance itself involves multiple stages, such as opening and reading the email, and
these decisions may correlate with unobserved characteristics.
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in Figure 7, which shows consumption estimates, split by hour-of-day.
Figure 7: Impact of EV Tariff on Electricity Consumption
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Notes: This figure reports IV estimates of the effect of adopting an EV tariff on electricity consumption (kWh), split
by hour-of-day. The instrument is an indicator for assignment to any email-based encouragement. Each panel reports
a different specification: (1) is our main specification (Equation (8)); (2) defines a separate instrument for each en-
couragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to just the £50/Month
group and the control group; (5) just the £50/Month (No Bump) group and the control group. All specifications con-
trol for baseline consumption, and fixed effects for randomization block and week. Lines depict 90% (dark) and 95%
(light) confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO
Go off-peak hours (23:30-05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard
variable rate. Blue shaded box indicates typical system peak hours (16:30-20:30), which are highlighted to show times
of heightened grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour
to align with IO Go’s pricing structure. Percentages represent average treatment effects as a share of the control group
trial participants who are not on an EV tariff, for off-peak (23:30-05:30, green) and peak (16:30-20:30, blue) periods.
Estimates come from regressions pooling all hours in each window, as reported Tables A7 and AS8.

Our preferred specification uses a single binary instrument for assignment to any of
the four encouragements. Combining the four encouragement groups into a single binary
instrument mitigates concerns raised in Mogstad et al. (2021), particularly the potential
for negative weights being assigned to individual instruments when multiple instruments
are used. To assess robustness, Figure 7 also shows (i) a specification that includes the
four encouragement indicators as separate instruments and (ii) 4 additional specifica-
tions that use each encouragement indicator as a stand-alone instrument. The estimated

effects are similar across specifications, indicating that our findings are not sensitive to
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the instrument definition.??

We show the consumption profile of the baseline group - control households who
did not adopt an EV tariff (IO Go or its similar non-managed charging ToU version) — to
contextualize these treatment effects. These customers’ electricity consumption exhibits
a pronounced peak beginning around 16:30, consistent with typical residential demand
patterns and uncoordinated EV charging behavior (see Figure 8). Using the estimated
treatment effects from the main specification in Figure 7, we overlay the causal impact
of EV tariff adoption onto the baseline profile. This constructed profile illustrates how
the EV tariff shifts electricity demand away from the evening peak and toward the desig-
nated overnight off-peak period. The resulting pattern flattens the peak-hour hump and
concentrates usage during hours when electricity is less expensive and there is less grid
stress, underscoring the potential of managed charging to reshape intraday load without

increasing total consumption.

Figure 8: Electricity Consumption With and Without EV Tariff Adoption
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Notes: This figure displays mean hourly electricity consumption (kWh) for trial participants in the control group who
were not enrolled in the EV tariff. The purple line (“Baseline”) plots their observed consumption. The black line (“With
EV Tariff”) adds the estimated hourly treatment effects of EV tariff adoption, recovered from the IV analysis displayed
in the first panel of Figure 7. The shaded area denotes the 95% confidence interval for the treatment effect estimates.

29Note that this preferred specification deviates from our pre-analysis plan of using the encouragement arms as
four separate instruments. However, results from the pre-specified analysis, which includes all four encouragement
indicators in the regression, are presented in the second panel of Figure 7.
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3.4 Heterogeneity

We explored heterogeneity in treatment effects across consumers by interacting the
encouragement treatment with three key variables: (1) the Index of Multiple Deprivation
(IMD), (2) property value of their home, and (3) baseline electricity consumption. In
these specifications, we treat interaction terms (e.g., EV tariff x baseline covariate) as
endogenous and instrument them with the corresponding interaction of the randomized

encouragement and the covariate, consistent with standard IV practice.

The IMD is a composite measure that captures multiple dimensions of deprivation
(e.g., crime, housing barriers, health) for small geographic areas, weighted to produce
an overall deprivation score. For this analysis, we constructed IMD terciles by linking
trial participants’ meter-point-level postcodes to area-level IMD ranks.3° Socioeconomic
status shapes both the ability to adopt EVs and the potential financial gains from man-
aged charging. Households facing financial hardship could in theory benefit most from
cheaper charging, but structural barriers, such as lack of off-street parking or neighbor-
hood safety concerns, may prevent uptake. Understanding these dynamics requires ana-

lyzing effects across the socioeconomic gradient.

We used property value as an additional indicator of socioeconomic status to com-
plement our location-based Index of Multiple Deprivation (IMD) measure. Property
value data were obtained from WhenFresh, a provider that aggregated daily listings from
Zoopla, a major UK property portal. Each property was associated with a Unique Prop-
erty Reference Number (UPRN), a persistent identifier that remained constant through-
out the property’s lifetime. Using customers’ UPRNs, we matched each record to the
most recent property value available in the WhenFresh dataset. This matching procedure
yielded property value information for 98% of the sample. We used the full WhenFresh
dataset (29,783,591 properties) to establish national cutoffs for property-value terciles.
Thus, the heterogeneity bins in our analysis reflected thresholds derived from the na-

tional property distribution rather than from our sample alone.

For baseline electricity consumption, we computed the total kWh used per customer
by aggregating all available half-hourly smart meter readings per day over the period
from February 15, 2023, to August 31, 2023. Households with high baseline electricity
consumption may have greater flexibility to shift charging, since larger batteries or mul-

tiple EVs provide more scope to delay without running short of range. At the same time,

30We discretize the IMD into terciles to avoid very small cell sizes in the most deprived group.
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their greater and more time-sensitive energy needs can reduce flexibility, leaving less
room to adjust without disrupting routines. This dimension highlights whether man-
aged charging works chiefly for high-demand users or more broadly across households,

shaping expectations about scalability and future generalizability.

We observed mixed evidence of heterogeneity in take-up. Adoption of IO Go was
higher in IMD terciles 2 and 3 (Figure A8A), but we did not observe the same pattern
in looking at heterogeneity by property values (Figure A9). Take-up also declined with
baseline electricity use: households with higher pre-trial consumption were less likely
to adopt, particularly under the £50/Month (No Bump) condition (Figure A10A). This
pattern suggests that higher-consuming households may be more reluctant to accept re-

strictions on charging, perhaps due to greater perceived disruption to their routines.

Turning to impacts on electricity consumption, we found limited evidence of hetero-
geneous impacts. Across the three dimensions we considered, there was no evidence of
differences in off-peak effects. For peak hours, the largest reductions occurred in the
middle IMD tercile (Figure A8b) and the highest property value tercile (Figure A9b).
However, these results should be interpreted with caution given the limited precision of
subgroup estimates: only 9% of our sample resided in the most deprived tercile and 7%
occupied properties in the lowest tercile of the national property-value distribution. This
reflects the strong association between EV ownership and higher socioeconomic status
(Figure A8c, Figure A9c). The small sample size in this group restricted our ability to de-
tect precise effects among more deprived households. By contrast, baseline electricity use
showed little role in shaping treatment impacts. Conditional on adoption, consumption

effects are broadly similar across all terciles of pre-trial consumption (Figure A10b).3!

3.5 Intelligent Octopus Go user behavior

For participants who adopted IO Go, we had telemetry data on their plug-in events
and charging sessions, allowing us to examine their behavior more closely. On average, IO
Go households consumed 1.02 kWh per hour (for their home overall, not just their EV),
equivalent to 8,935 kWh per year. Of this total, 22.6% was attributable to EV charging,
or around 2,020 kWh annually. If all charging occurred at home and the vehicle averaged
about 3—4 miles per kWh, this implies 6,000-8,000 miles driven per year. These figures

are consistent with the average annual car mileage in the UK (approximately 7,000 miles;

31'We also looked at heterogeneity by weekday versus weekend, but found demand impacts to be similar regardless
of the day of the week.
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Department for Transport, 2024), suggesting that the mileage behavior in our sample is

comparable to that of primary household vehicles in the broader UK population.

We further explored how users from our sample engaged with automated EV charg-
ing. Two key patterns emerged: strong adherence to the automation schedule and a high
degree of consistency in treatment effects across users. Together, these findings suggested
that managed charging was generally well integrated into users’ routines with minimal

disruption.

We begin with evidence of adherence to the automation schedule. By adherence, we
mean their likelihood of overriding the Al charging algorithm. Adherence not only pro-
vides a useful proxy for satisfaction with the tariff. It also is the sufficient statistic, within
the theoretical framework we develop in Appendix G, for understanding the efficiency of
this tariff versus RTP. We analyzed 2,359 10 Go participants’ use of the “bump" function,
which allowed them to override the default schedule and initiate immediate charging.
We found that 55% of users never used the bump feature at all (Figure A15), and bump
events accounted for only 2.3% of total IO Go electricity consumption. These infrequent
overrides, consistent across treatment groups, suggested that the AI managed charging
schedule was generally accepted and rarely disrupted. This was also consistent with what
we saw in Figure 5, where the sustained uptake of IO Go suggests that trial participants

generally accepted the automated approach.

Overall, we found that the probability that a customer overrode on a given day was
1.9% — 0.3% probability of override in off-peak hours, 0.3% during peak times as we
have defined them (16:30-20:30), and 1.3% during all other hours of the day (multiple
overrides in a single day were extremely rare in our data). Given the simulations from
the theoretical section, these numbers were well below the crossover override rate where
RTP dominates an AI EV-managed tariff (i.e., 33%).

Although bump charging was infrequent, its implications for grid planning depend
on whether charging is correlated across locations or time. To assess this, we used a
fixed-effects regression to decompose the variance in bump charging across customer,
temporal, spatial, and temperature components. As shown in Appendix E, most of the
variation was driven by customer-specific differences, with little contribution from time,
location, or temperature. This dominance of customer fixed effects indicated that bump
charging was largely idiosyncratic rather than correlated, making it unlikely to generate

coincident demand spikes that would strain the grid.
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Figure 9: Hourly Patterns of EV Plug-In and Charging Behavior

Percentage Percentage
of Total kWh of Customers
Charged - 40%
- W Bump (Override)
— Scheduled
10% =
— 30%
I - 20%
5%
] - 10%
0, 0,
%5 5 10 15 20 0% 5 10 15
Hour of Day Hour of Day
(a) Consumption by Hour-of-Day (b) Plugged In by Hour-of-day

Notes: Panel (a) shows, by hour of day, the percentage of electricity consumption that occurred during that hour. This
consumption is further divided into charging triggered by bump (charging initiated by users overriding the schedule)
versus charging scheduled by IO Go. Panel (b) plots, by hour of day, the percentage ot active users who had their EVs
plugged in. A user is considered active during a given hour if that hour falls between their first-ever and last-ever
recorded plug-in event. The analysis is based on data from 2,359 10 Go customers.

Preferences for charging settings further reinforce this uniformity. 61% of trial par-
ticipants preferred their vehicle to finish charging between 07:00 and 09:00, and 93% set
their desired state-of-charge (SOC) at 80% or higher (Figure A12a). Plug-in patterns also
followed a predictable rhythm: more than half of plug-in events occur within 24 hours
of the previous one, typically following a post-work return home and preceding the next

morning’s commute (Figure A12b).

We also document that the IO Go mechanism operates effectively with sparse and
infrequently updated private information. The median customer only changes their set-
tings twice after the initial onboarding. The bulk of preference discovery occurs in the
first week: one week after adopting 1O Go, 54% of customers never updated their settings
again (Figure A11). This stability underscores the mechanism’s minimal information re-
quirements. Once users report a small number of primitives, the algorithm can imple-
ment near-efficient charging schedules without ongoing preference elicitation or strategic

interaction.

If customers were to begin charging as soon as they plugged in, typically between
5:00pm and 7:00pm, it would place significant strain on peak demand. Managed charg-
ing avoids this issue by decoupling plug-in time from charging time; customers still en-
joy the convenience of plugging in when they arrive home, while AI managed scheduling
shifts the actual charging to off-peak hours, as illustrated in Figure 9. Importantly, these

behaviors are all consistent across our encouragement groups, suggesting that once trial
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participants opt into the tariff, they tend to use it in similar ways (see Figures A13, A14
and A16). This behavioral consistency is mirrored in the relatively homogeneous con-

sumption impacts shown in Figure 7.

3.6 Heterogeneity in treatment effects based on telemetry data

We next examined which dimensions of charging behavior drive heterogeneity in our
estimated impacts. Specifically, we focused on behaviors that shape the potential for
managed charging to shift load from peak to off-peak hours. Because IO Go specific
telemetry is only available once customers have adopted the tariff, we cannot directly
observe these behaviors for non-adopters. We therefore use a difference-in-differences
design among participants in our field experiment who later adopted IO Go, following
Callaway and Sant’Anna (2021). Approximately 55% of field experiment participants
who adopted IO Go did so during the incentivized period, while the rest adopted in the
nine months afterwards. This staggered adoption pattern produces sufficient variation to

support a difference-in-differences style analysis.

We estimated heterogeneous treatment effects by plug-in rate — measured both as
the proportion of all hours in which a customer’s EV is plugged in and, separately, the
proportion of peak hours with an active plug-in. We reason that these measures capture
the degree of availability of the vehicle for managed charging. However, we interpret
them as descriptive correlates rather than causal drivers of heterogeneity, since plug-in
behavior is endogenous and also may be influenced by tariff adoption. We find substan-
tial variation: households with higher plug-in rates experienced markedly larger shifts
of electricity use from peak to off-peak periods (Figure 10). This pattern suggests that
households providing the AI with more frequent charging opportunities enable greater

flexibility in shifting demand away from system peaks.

We also examined heterogeneity along other behavioral dimensions. First, we con-
sidered "bump” charging. Households that have ever used the bump function show a
noticeably larger increase in off-peak consumption, but their reduction in peak-period
usage is statistically indistinguishable from non-bump households (Figure A23). Second,
we assess heterogeneity by users’ preferred “ready-by” times and target charging levels,
finding no systematic differences in either peak or off-peak effects (Figure A24). Taken
together, these results suggest that, for reducing peak-hour consumption, plug-in avail-

ability is the dominant behavioral factor shaping treatment effects.
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Figure 10: Heterogeneity in Impacts by Plug-in Behavior
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(b) Impacts by Quintile of Plug-in Rate During Peak Hours
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. Panel (a) shows impacts by the
quintile of the plug-in rate, and panel (b) shows impacts by the quintile of plug-in rate during peak hours (16:30-
20:30). Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are
computed using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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3.7 Value of Al managed charging beyond time-of-use tariff structure

As we showed in Section 3.1, we encouraged customers onto a similar ToU tariff that
was not Al managed because they have an incompatible charger or EV. The IO Go and
Octopus Go tariffs both feature time-of-use pricing, but, importantly, IO Go includes Al
managed charging, whereas Octopus Go relies on customers manually adjusting behav-
ior in response to the tariff’s day and off-peak rates or setting up their own automated
charger schedules to align with the tariff (but note that we do not observe settings from
these trial participants). To understand the added value of Al managed charging, we es-
timated how consumption under IO Go responded to the real-time system price, relative
to consumption under Octopus Go.>> While neither IO Go nor Octopus Go participants
were directly exposed to system prices, the Al management of 10 Go charging schedules
responds to those prices on the retailer’s behalf. Thus, the observed difference in elas-
ticity reflects the supplier’s algorithmic responsiveness, not household-level reactions to

system costs.

Our analysis examined responsiveness to real-time system prices across three pe-
riods of the day: daytime (5:30-16:30), evening (16:30-23:30), and overnight off-peak
(23:30-5:30). (Note that “system prices” in Great Britain refer to the real-time wholesale
prices for each half-hour, rather than day-ahead prices.) We examined responsiveness us-
ing a Poisson regression, which accommodates zero consumption and yields coefficients
that can be interpreted directly as elasticities of electricity consumption with respect to

system prices. Table 1 reports results from the following specification:

log(E[Y;t]) = a + B1Dj; + B2 log(Py) + B3[Dj x log(Py)] + pg (9)

where Y}, is electricity consumption for trial participant i at date-hour ¢, Dj; is an indi-
cator for IO Go participation, and P, is the system price. The coefficient §, captures the
price elasticity of demand among the baseline group (Octopus Go users), while 3 cap-
tures the differential elasticity for IO Go users. We also included fixed effects for day d, so
that coefficients are identified from within-day variation across participants. The sample
in this analysis comprised the subset of our original trial sample (n = 13,233) who signed
up for either IO Go or Octopus Go (n = 2,963).33

32In Great Britain, the system price is the market-wide wholesale price of electricity settled every half hour. It reflects
the cost of balancing supply and demand on the grid and is published by the National Energy System Operator (NESO).

33This analysis was not pre-specified. We have included it as an exploratory analysis to help to isolate the automation-
related mechanisms.
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Given that tariff assignment was not random, this analysis should be interpreted as
suggestive rather than causal. Many trial participants on Octopus Go were unable to
enroll in IO Go due to compatibility constraints rather than personal preference, limiting
selection into IO Go to some extent. However, even where this is the case, tariff choice
remains mechanically correlated with vehicle and charger type; and, it is true that some
Octopus Go customers may actively have chosen not to enroll in IO Go to retain autonomy

over their charging schedule.

Overall, we found within-period differences in the price elasticity of demand from
IO Go and Octopus Go customers — where, again, note that the price was the system
price that consumers themselves never saw, but rather was a key input the Al used
when scheduling charging. During the evening period that encompasses peak hours
(16:30-23:30), trial participants on IO Go exhibited significantly greater price respon-
siveness than Go customers: a -0.044 additional price elasticity of demand. During the
overnight off-peak window (23:30-05:30), the price elasticity of demand was again signif-
icantly greater for IO Go customers than Octopus Go customers (by -0.024). By contrast,
during daytime hours (05:30-16:30), the interaction term is statistically indistinguish-
able from zero, suggesting no meaningful difference in price responsiveness between the
two groups, possibly due to fewer vehicles being plugged in during these hours (and thus

less available charge to shift).

When pooling hours across the full day, there is no evidence that IO Go partici-
pants systematically shifted more consumption from higher-priced periods toward lower-
priced ones than Octopus Go customers (Column (4) of Table 1). If anything, Octopus Go
customers appeared to consume relatively more when prices were low, a counterintuitive
pattern. There are three potential reasons for this that we cannot disentangle. First, is
selection: Octopus Go adopters may have been those who received the IO Go encour-
agement but opted into Octopus Go without any monetary incentive. These participants
may have had more demand flexibility than the incentivized IO Go participants, which

allowed them to be more able to respond to the ToU tariff structure.

Second, these estimates reflect total household consumption, not just EV charging.
Thus, the apparent responsiveness of Octopus Go users could also reflect shifts in non-EV
household load to overnight hours, rather than differences in automated charging. Un-
fortunately, we lack telemetry data for Octopus Go customers to directly test this mecha-
nism. Third, differences in the composition of the two groups may also contribute to the

pattern, with Octopus Go participants consuming more in low-price periods than IO Go
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customers, though the relative balance of baseline covariates between IO Go and Octopus
Go users, shown in A13, helps alleviate concerns about compositional differences. Focus-
ing on specific periods (Columns (1)—(3) of Table 1) reduced the influence of the issues
noted above. In these periods, the Al was likely the main driver of when charging oc-
curs, because households were not exposed to dynamic prices under their ToU structure
and thus would have been unlikely to respond to half-hourly-varying market prices. This
makes the within-period elasticities a clearer measure of the AI’s responsiveness than the

all-hours estimates.

Our synthesis of these results is that within defined periods, the AI managed schedul-
ing feature in IO Go shifted consumption away from high-price hours more aggressively
than trial participants exposed solely to Octopus Go’s ToU pricing. This enhanced re-
sponsiveness likely reflects the supplier’s ability to algorithmically optimize charging
schedules when vehicles were most likely to be plugged in. By contrast, Octopus Go
customers received a static overnight rate and had to determine their charging behavior

manually, leading to flatter responsiveness within periods.

Table 1: Responsiveness to Systems Prices

period 5:30-16:30 16:30-23:30 23:30-5:30 All Hours

Model: (1) (2) (3) (4)

Variables

10 Go 0.075™ 0.077* -0.119* 0.089™
(0.030) (0.031) (0.036) (0.025)

log(Price) 0.047* -0.003 0.010 -0.125*
(0.008) (0.010) (0.013) (0.010)

IO Go x log(Price) -0.004 -0.041** -0.021% 0.017*
(0.009) (0.011) (0.011) (0.008)

Fixed-effects

date Yes Yes Yes Yes

Fit statistics

Octopus Go Mean 1.08 0.656 0.968 1.79

Observations 6,178,064 4,489,911 4,257,014 14,924,989

Clustered (User & date-hour) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports estimates from Equation (9), examining how average hourly elec-
tricity consumption under IO Go and Octopus Go responds to system prices. Column (1)
covers daytime hours (05:30-16:30), column (2) evening (16:30-23:30), column (3) overnight
off-peak (23:30-05:30), and column (4) pools together hours across the whole day. All regres-
sions included day fixed effects, so coefficients are identified from within-day variation across
participants; standard errors were clustered by user and hour.

Taken together, these results indicate that managed charging under IO Go not only
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shifted demand away from the peak, but also redistributed it within periods in a way that
was responsive to real-time system costs. These findings suggest that managed charging
can outperform conventional time-of-use tariffs in aligning household electricity con-
sumption with the dynamic needs of the grid, closer to real-time. We should also note
that the Al algorithm was also responding to ancillary and other markets that we did not

model here.

4 Alternative estimation strategy: difference-in-differences

of a much larger and earlier sample

In addition to our experimental design, we leveraged a differences-in-differences (DiD)
approach using observational data to estimate the impact of adopting IO Go on house-
hold electricity consumption. This strategy exploited the staggered, voluntary adoption
of IO Go across Octopus Energy customers in 2023 (one year prior to our experiment).
Everything that follows was pre-specified in our pre-analysis plan, except where devia-

tions are explicitly noted.

Comparing estimates from the DiD to our field experiment allows us to contrast the
behavior of voluntary early adopters of managed charging (captured by the DiD) with
that of harder-to-recruit individuals who required external encouragement to adopt (cap-
tured by the field experiment). The field experiment sample may better reflect the future
mainstream population, who are not proactively engaged, but require more pricing and
marketing interventions to adopt managed charging. Some of the observed differences
may also reflect other factors: changes to the Intelligent Octopus algorithm over time,
evolving day-ahead price profiles (particularly as the volatility of the energy crisis sub-
sided), or methodological differences, such as the potential for selection bias in the DiD
estimates, as highlighted in critiques of observational methods (LaLonde, 1986; Imbens
and Xu, 2024).

4.1 Empirical strategy

We began with a sample of 100,986 customers who adopted Intelligent Octopus Go
(IO Go) at some point in 2023. To isolate the effect of IO Go from other contemporaneous

changes, we further restricted the sample to customers who likely already owned an EV
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by December 2022, using the methodology outlined in Section 2.1. This ensured that ob-
served changes in electricity demand patterns were due to changes in charging demand,
rather than the initial uptake of EVs. These restrictions resulted in a sample of 20,249

customers.3*

We implemented a standard event-study difference-in-differences estimator, allowing
for staggered adoption and dynamic treatment effects, following Callaway and Sant’Anna
(2021). We made a parallel trends assumption based on “not-yet-treated" units. For each
group of units first treated in week g, and for each week t > g, we defined the group-time

average treatment effect on the treated (ATT) as:
ATT(gt) =E[Y; - Yo 1 [G=g]-E[Y; - Y, 5[ D; =0, G =g] (10)

where G = g denotes the cohort of units first treated at time g. We estimated both (1)
aggregate group-time effects, and (2) a single post-treatment estimate, constructed as the
weighted average of all group-time ATT estimates, with weights proportional to group
size. To mitigate potential bias from anticipation effects, we excluded the four weeks prior
to adoption from our estimation. Accordingly, our reference period, Y,_5, was hourly

consumption measured five weeks prior to the treatment (Roth, 2024).3°

To enhance comparability, we limited control cohorts to those scheduled to adopt IO
Go no later than twelve weeks after the treated group’s anticipation period ends. This en-
sured treated units were compared only to future adopters with similar adoption timing.
We chose a twelve-week window to balance comparability of treated and control groups
against the length of the post-adoption estimation horizon. Comparability was assessed
by examining pre-treatment trends, and we selected the longest horizon that yielded sat-
isfactory pre-trend balance. Our treatment assessment therefore relied on the follow-
ing parallel trends assumption: absent adoption, treated and not-yet-treated households

would have experienced similar trends in electricity use.

In addition, to improve comparability with the field experiment estimates and probe

underlying mechanisms, we estimated weighted versions of Equation 10, reweighting the

34This restriction was not specified in our pre-analysis plan. However, preliminary analysis revealed that failing to
condition on EV ownership by December 2022 would conflate the effects of tariff adoption with those of initial EV
uptake, thereby biasing our estimates of charging behavior.

35We assumed that once a customer first adopts IO Go, they remain “treated” in the sense that their experience with
the tariff continues to shape their behavior, even if they subsequently switched to another Octopus tariff (Callaway
and Sant’Anna, 2021). In practice, some customers did have more complex tariff histories. Under the irreversibility
assumption, their electricity consumption patterns are considered to remain influenced by IO Go from the point of
initial adoption. We view this as reasonable for two reasons: (1) 78% of customers who adopt IO Go subsequently
remain on it for at least 12 months afterwards, and (2) it is plausible that IO Go induces some degree of habit formation,
both in EV charging routines and in household electricity use more broadly.
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DiD sample match the field experiment sample based on pre-treatment tariff type. The
field experiment explicitly tried to exclude customers with any prior smart tariff usage.>°
Since smart tariffs incorporate time-of-use pricing structures, this exclusion dispropor-
tionately removed time-of-use tariff users from the field experiment sample. As a result,
only 14% of the field experiment participants were on a time-of-use tariff at baseline,
compared to 75% in the DiD sample.’” To align the tariff composition across the two
groups, we calculated the baseline shares of standard versus time-of-use tariff users in
each sample. We then reweighted the DiD observations by the ratio of field experiment
to DiD shares, ensuring that the reweighted DiD sample better reflected the field experi-

ment’s pre-treatment tariff distribution. 3%

Reweighting the DiD customers was important because their baseline consumption
profiles differed substantially based on prior tariff. Figure Figure A17 shows that DiD
customers on flat tariffs, DiD customers on ToU tariffs, and the field experimental con-
trol group had distinct consumption patterns before adopting IO Go, even though overall
consumption was similar across the three groups. Customers who had been on ToU tariffs
already displayed a consumption pattern closely aligned with IO Go’s incentives: mini-
mal afternoon peaking and high overnight usage, consistent with many having been on
Octopus Go, which offered cheaper overnight rates from 00:30 to 05:30. In contrast, DiD
customers who had been on flat tariffs still exhibited an afternoon peak, and while they
also showed an overnight spike in consumption, its magnitude was only about one-third
that of customers on ToU tariffs. Together, these patterns indicated that many DiD cus-
tomers were already partially aligned with IO Go’s incentivized charging profile prior to

adoption.

36This exclusion was not perfect; a small number of customers who previously had smart tariffs were part of our trial
sample. Smart tariffs are tariffs that require smart meters because their half-hourly unit rate changes.

37For historical reasons, there are a handful of time-of-use tariffs that are not “smart” tariffs; the most well-known
of which is called “Economy 7”, a tariff introduced in the 1970s to incentivize overnight electricity use, particularly for
storage heaters by offering cheaper rates during a fixed seven-hour off-peak window. In recent years, some EV owners
also adopted Economy 7 as a way to charge their vehicles at lower cost.

38We also implemented propensity-score reweighting. Specifically, we estimated the probability of being in the field
experiment (vs. DiD) sample using a logit regression with the following covariates: (1) tariff type prior to treatment,
(2) total electricity consumption in December before the study period (December 2022 for DiD, December 2023 for the
field experiment), (3) the share of consumption occurring during peak hours, (4) Octopus tenure, (5) IMD rank, and (6)
property value. The resulting propensity scores were then used as weights in the DiD regression. However, we found
that only the pre-treatment time-of-use tariff indicator had a substantive effect on the results. Given this, we opted to
show the results only of the simpler tariff-based reweighting approach described in the main text.
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4.2 Difference-in-differences results

Figure 11 shows that the difference-in-differences estimates are notably smaller than
those from the field experiment. In the unweighted specification (Column 1), IO Go
adoption is associated with a 0.06 kWh (7%) average hourly reduction in peak-period
consumption, and a 0.1352 kWh (8%) increase during off-peak hours. In contrast, the
field experiment estimates imply much larger shifts: a 0.581 kWh (42%) decrease during
peak periods and a 0.481 kWh (50%) increase off-peak.

This discrepancy appears to be largely explained by differences in baseline time-of-use
tariff usage. Column 2 presents the results after reweighting the DiD sample to match
the field experiment sample’s pre-treatment tariff distribution. After reweighting, the
estimated increase in off-peak consumption in the DiD analysis (0.451 kWh) matches
the field experiment analysis (0.481 kWh). However, the reduction in peak consump-
tion is still smaller in the DiD analysis: 0.24 kWh compared to 0.581 kWh in the field
experiment. This weaker peak effect is compensated for by a decline in daytime, non-
peak consumption in the DiD sample, as shown in Figure A18, resulting in no overall
increase in consumption. We hypothesize that the observed differences in the timing of
impacts throughout the day arise from compositional differences between I0 GO par-
ticipants and those in our field experiment sample, with DiD participants likely having
greater daytime flexibility. We conclude from these results that the field experiment tar-
geted a sample whose characteristics made their baseline consumption less aligned with
IO Go’s optimization - i.e., because their charging behavior was not previously respond-
ing to dynamic or off-peak pricing, leaving more scope for managed charging to change

consumption in both peak and off-peak hours.

We also estimated cohort-specific treatment effects, defining cohorts by the week of
adoption. We found that treatment effects were relatively homogeneous across cohorts,

as shown in Figure A19.

Taken together, this homogeneity in treatment effects across cohorts, combined with
the close alignment of field experiment and reweighted DiD estimates, suggests that the
impact of IO Go is relatively stable across adopters. The primary source of variation ap-
pears to be baseline charging behavior, particularly whether customers were already on
time-of-use tariffs prior to adoption, rather than any inherent heterogeneity in respon-

siveness to managed charging.

We also conducted a DiD analysis focusing on customers who adopted IO Go in 2024,
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Figure 11: Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-05:30),
using a sample of 20,249 customers who first-ever enrolled in IO Go in 2023. Each panel plots treatment effects
relative to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted
by whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway
and Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption
levels. Post-treatment effects are estimated using average of all group-time average treatment effects, with weights
proportional to the group size.

to make the comparison period more directly aligned with the field experiment time-
frame. However, identifying which customers already owned an EV at the start of 2024
proved difficult. We believe this is likely due to increased uptake of low-carbon technolo-
gies (LCTs). Of particular note, there was a rise in heat pump installations at the end
of 2023, driven by the UK Government’s expansion of heat pump subsidies in October
2023.3% This increase in LCT ownership likely produced additional consumption spikes

resembling EV charging, but originating from other devices. Lacking direct observation

39Coverage on heat pump takeup can be found in the BBC and Guardian. Academic research on the electricity
consumption impacts of heat pumps is documented in Bernard et al. (2024)
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of LCT ownership, we cannot be sure whether changes in consumption among customers
adopting IO Go in 2024 were driven by tariff adoption, adoption of EVs, or adoption of

other LCT devices that encouraged more attention paid to which tariff they were on. 4°

We partially solve this problem by restricting the 2024 sample to customers who ap-
peared to own an EV as of August 2023, which is (1) before the increase in the heat pump
subsidy and (2) during summer months when heat pump use is minimal. This refine-
ment improved the accuracy of EV identification but did not eliminate the possibility
that some customers adopted heat pumps or other LCTs concurrently with switching to
IO Go. The resulting 2024 DiD estimates closely matched the 2023 results for peak and
off-peak periods but showed an 8 percent increase in total daily consumption, a pattern
absent in 2023. We interpret this as reflecting contemporaneous adoption of other LCTs,

such as heat pumps. Full results and further discussion are provided in Appendix F.

5 Welfare impacts

The large causal shifts in consumption from peak to off-peak hours from the AI man-
aged EV tariff, as seen in Section 3.3, have four potential benefits: (1) benefits to con-
sumers from lower electricity bills, (2) lower electricity procurement costs to the electric-
ity supplier, (3) climate change mitigation benefits via CO,e abatement,*' and (4) reduced
grid operation and stabilization costs. In this section, we first outline our methods for es-
timating these various benefits and costs of IO Go adoption. We then present the direct
benefits accrued in 2024. Finally, we apply the Marginal Value of Public Funds (MVPF)
framework developed by Hendren (2016) and Hendren and Sprung-Keyser (2020) to as-

sess the welfare implications of subsidizing managed charging.

5.1 Estimation

To estimate the magnitude of these benefits, we combined administrative data from

Octopus Energy with external inputs and applied outcome-specific methods. For con-

40This tariff-switching behavior is documented by Bernard et al. (2024), who examined households that received heat
pump installations from Octopus Energy. They found that following the installation, two-thirds of these households
adopted a smart tariff, with Intelligent Octopus being the most popular choice, possibly due to adoption of an EV at a
similar time.

41The CO,e abatement arises via two pathways: directly, through reduced consumption during high-emissions hours
(a shift we identified using our randomized encouragement design); and indirectly, through potential substitution
from internal combustion engine (ICE) vehicles to EVs caused by lower electricity bills (also identified through our
randomized encouragement) that reduce the lifetime cost of EV ownership. We believe this latter behavioral response
may be important, but we acknowledge that it is uncertain and speculative.
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sumer benefits, we used administrative data on daily average electricity bills per kWh.
We analyzed the impact on trial participants’ bills using an instrumental variables speci-
fication analogous to Equation (8), but where Y};; is the mean daily bill (in £) for user i on
day t. Our outcome is the amount customers paid per kwh of electricity, and we weight

the regression by the consumption each day.*?

For supplier procurement costs, we applied an analogous IV analysis. Octopus Energy
provided administrative data on the cost per kWh of electricity during each half-hour of
the day. These costs include both the wholesale price of power and non-energy charges
such as transmission and distribution fees, but exclude grid services, such as participation
in ancillary markets. The wholesale price itself is a blend of hedged prices (days, weeks,
and months ahead), day-ahead prices, intra-day prices, and the final system price for
the half-hour. The exact weighting of these elements is somewhat subjective and may
vary over time, but we believe this measure more closely approximates the supplier’s
actual procurement costs than using the system price alone. Here, the outcome is Octopus

Energy’s total daily procurement cost.

To assess direct emissions impacts from shifting consumption to lower-CO,e-intensity
hours, we multiplied trial participant electricity consumption in each half-hour inter-
val by the corresponding average Marginal Operating Emissions Rate from WattTime,

and aggregated these values to the daily level.*?

We analyzed the impact on CO,e from
electricity consumption using an instrumental variables specification analogous to Equa-
tion (8), but where Yj; is CO,e from electricity consumption (in grams of COe) for trial
participant i on day ¢.** To estimate the potential CO,e abatement benefits from induced
substitution of internal combustion engine (ICE) vehicles to EVs, we combined 10 Go bill

savings with existing estimates of EV price sensitivity.*>

42Gince 10 Go customers typically charge only on a subset of days, a simple unweighted comparison across all days
would dilute the treatment effect by including many days with no charging activity.

43 As described in (as described in Section 2.6, the Marginal Operating Emissions Rate is the emissions associated
with the marginal change in load on the grid (WattTime, 2022).

44We monetize this using the UK government’s SCC, which is approximately £250 per tonne of COe. This is calcu-
lated by estimating the marginal abatement cost (i.e., resource costs) per tonne of CO,. The government estimates the
amount of COje that is needed to meet the UK’s future COje targets and walks up the marginal abatement cost curve
until it hits that CO5e target, which hits costs at £250 per tonne of COje. This UK government approach is in contrast
to how other countries, like the US, estimate the social cost of carbon. Those other countries use the marginal damage
per tonne of COje from integrated assessment models.

45We began by estimating the average lifetime electricity bill savings from IO Go over a ten-year vehicle lifespan,
discounted to present value. We treated this as a reduction in the total cost of EV ownership. Applying a price elasticity
of EV demand of -2.547 from Hahn et al. (2024), we inferred the corresponding proportional increase in EV adoption.
To translate this into absolute uptake, we used estimates from Department for Transport (2024) that approximately
6.7% of UK households (1.95m of 28.8m households in the UK) purchase a new car each year. The resulting increase
in EV uptake was multiplied by the difference in lifecycle COje emissions between ICE vehicles (£8003.89) and EVs
(£3259.66) (Hahn et al., 2024), yielding £4744.23 in CO;e benefits per induced switch. We scaled these annual impacts
using government projections of ICE vehicle sales, which decline over time (Department for Transport, 2023), and
discounted future abatement to present value using a 3.5% rate recommended by HM Treasury (2020).
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Finally, managed EV charging may contribute to avoiding broader electricity system
costs, though the magnitude of these benefits is uncertain. Some top-down modeling
studies suggest potentially large system-wide gains. We discuss the estimates from one

such study in the contexts of our results in the next section.*®

5.2 Benefits/savings from adoption of managed charging

Al managed charging presented large consumer bill benefits. Figure 12 presents the
estimated benefits. We found that managed charging reduced consumer electricity bills
by £0.04 per kWh, an approximately 18% decline relative to the control group. Applied
to average consumption over the analysis period, this implies a total bill reduction of

approximately £343 during our study.?’-48

The electricity retailer saw similar savings in procurement costs (procurement costs
include the wholesale price of power and non-energy charges such as transmission and
distribution fees; 95% CI: £-261 to £766). Procurement savings should not be interpreted
as additional to consumer bill savings; the similarity of their magnitudes suggests near
100% pass-through of savings to trial participants, at least based on the period of our
analysis (2024).%

Managed charging also yielded positive environmental benefits. Direct CO,e abate-
ment from shifting electricity consumption to cleaner off-peak hours generated a decrease
of 124kg CO,e per trial participant in 2024, which translates to estimated benefits of £35
based on a carbon value of £287 per tonne of CO,e emitted (Department for Energy Secu-
rity and Net Zero, 2023), though with wide uncertainty (95% CI: £-253 to £287). Indirect
CO,e abatement, arising from substitution from ICE vehicles to EVs, due to lower oper-
ating costs of EVs,”? generated a further decrease of 143kg CO,e, or £40.9 (95% CI: £20.6

40In our pre-analysis plan, we pre-specified estimating COse impacts using the ITT framework. We did not pre-
specify the use of IV estimation for bills or COje savings. We adopted the IV approach here because it more directly
captures the causal effect of IO Go adoption — the quantity of substantive interest. While our pre-analysis plan focused
on MVPF calculations rather than consumer bills, we now report bill savings as well, as they provide an important and
policy-relevant measure of consumer benefits.

47Based on the average annual electricity consumption of control group trial participants not enrolled in an EV tariff
(9,063 kWh).

48The counterfactual for our £343 annual savings estimate is the average electricity bill of the control group during
the experimental period, which includes customers starting on and adopting a mix of tariffs. If instead we apply a
counterfactual based on a standard flat tariff, the estimated annual savings increase to £650. This figure is calculated
using our estimated consumption treatment effects from Figure 7, applied to the bill under the flat tariff. The £650
estimate represents a 34% bill reduction.

49The point estimate on procurement cost savings was smaller than the point estimate on bill savings, but the es-
timates’ confidence intervals overlap each other’s point estimates; also note that we have not included revenue from
ancillary markets in the estimation of procurement cost savings.

50We are assuming that consumers value fuel efficiency in their decisions to buy a vehicle, which has some support

48



to £61.2), in estimated benefits. The confidence intervals for indirect CO,e abatement
given in Figure 12 reflect only the uncertainty from the regression of consumer bill sav-
ings on EV tariff adoption. This likely understates the true uncertainty, which is outside
the scope of this research. Additional sources of uncertainty include the price elasticity of
EV adoption, the future cost trajectory of EVs, and the relationship between EV adoption
and net CO,e damages.

We estimated a resource cost per tonne of approximately —£1,285, based on annual bill
savings of £343 and total emissions reductions of 0.267 tonnes CO,e per customer (this
combines 0.124 tonnes CO,e of direct and 0.143 tonnes CO,e of indirect savings). Note
that this calculation uses the annual savings as the cost, rather than taking the net present
value of present and future savings. The £343 figure corresponds to average bill savings
relative to the experimental control group; savings are £650 relative to the retailer’s stan-
dard flat tariff. The latter implies a resource cost of —£2,434 per tonne (-650 + 0.267).
Using a more conservative measure based on supplier procurement savings (£237 per
customer per year), the implied cost is —£888 per tonne (-237 + 0.267). In summary, the
tariff and technology combination was a very cost-effective way to reduce COe emis-
sions, much lower than the next best technology (Gosnell et al., 2020; Gillingham and
Stock, 2018; Hahn et al., 2024).

For savings from avoided system costs, we used the model in Franken et al. (2025),
who estimated that fully flexible EV-related electricity demand, relative to a baseline
with no flexible load, could reduce annual system costs in Great Britain by up to £0.25
billion in 2025 and as much as £4 billion by 2035.>! These savings arose from both op-
erational efficiencies, such as increased use of lower-marginal-cost renewable generation,
and capital savings, including deferred investment in firm capacity and grid infrastruc-
ture. Notably, the study found diminishing marginal returns: the first 25% of EV users
adopting managed charging account for 50% (£2 billion in 2035) of the projected sav-

ings.>?

Grigolon et al. (2018); Forsythe et al. (2023).

>1Their estimate was based on a whole-system linear cost optimization model, calibrated to assumptions used by the
UK system operator. To the best of our knowledge, Franken et al. (2025) is the study most closely aligned with our
context on two dimensions. First, it matches our outcome of interest: assessing the grid impacts of managed charging in
monetary terms. By contrast, many other studies focus on EV deployment without more detailed modeling of managed
charging (Heuberger et al., 2020), or in terms of electricity consumption, without translating to monetary benefits
(Crozier et al., 2020). Second, it is aligned in the geographic focus on Great Britain. There are several relevant studies
examining system benefits of managed charging in California (Li and Jenn, 2024) or the United States more broadly
(Powell et al., 2022), but to the best of our knowledge, Franken et al. (2025) provides the most directly applicable
evidence for our setting in Great Britain. For an overview of studies relevant to our setting, see Thornhill and Deasley
(2018).

52 As Franken et al. (2025) notes, “The first units of flexible EV charging tap into uncontested renewable generation,
unlocking large benefits with a relatively modest flexibility rollout. However, beyond the 25% mark, excess renewable
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Figure 12: Benefits of Adopting EV Tariff per Household in 2024

Benefits
(£)

300
200
100
0

Customer bill Procurement Direct CO, abated, Indirect CO, abated, A\_/oided

cost consumption shifts ICE to EV subst. grid cost

Empirical Estimates Model Estimates

Notes: This figure presents estimated benefits in 2024 of adopting an EV tariff. Trial participant bill savings are derived
from causal estimates using administrative data on daily average electricity bills per kWh; the estimated savings are
£343 per vehicle (95% CI: £173 to £512). Procurement cost savings are estimated at £237 (95% CI: £-261 to £766).
(These costs include both the wholesale price of power and non-energy charges such as transmission and distribu-
tion fees, but exclude revenue from grid services, such as participation in ancillary markets.) The similarity in the
magnitudes of bill and procurement savings suggests that the sup&)lier passed through nearly all cost reductions to
customers over the 2024 analysis period. Direct CO,e abatement reflects emissions reductions from shifting electricity
consumption to off-peak periods; these are valued at £35 (95% CI: £-253 to £324), using half-hourly marginal emissions
intensity data matched to observed load-shifting. Indirect CO5e abatement from ICE to EV substitution is valued at
£40.9 (95% CI: £20.6 to £61.2), estimated by combining observed IO Go bill savings with price elasticity-based pro-
jections of EV adoption and associated emissions reductions. Grid benefits are sourced from Franken et al. (2025),
showing per-vehicle value under a scenario of 100% smart charging adoption. The shaded area illustrates the range of
estimates across multiple modeled scenarios, where benefits range from £99 to £146 per year in 2035.

Our trial finds that nearly all peak EV load can be shifted through managed charging,
and that this behavior can be sustained for over a year, consistent with the assumptions
in Franken et al. (2025). This implies that system-level benefits in the range of £2-4
billion (from 2035 onward, in £,(,4) could be feasible, conditional on widespread EV and
tariff uptake, relative to a baseline with no flexible demand. When expressed on a per-
vehicle basis, assuming 27 million EVs on the road in the UK by 2035 (National Energy
System Operator, 2023), this equates to approximately £146 in system savings per vehicle
in 2035 under universal managed charging.>® Under “constrained” managed charging,>*

savings fall modestly to £120 per vehicle. When adding flexible heat demand to the

generation becomes more scarce slowing down further gains."

53In 2025, Franken et al. (2025) estimates the value is £94 per EV; the value is lower than in 2035 due to greater grid
constraints in 2035 potentially solved by EV flexibility.

>4In Franken et al. (2025), the constraints are: automation only between 12 am and 4 am and 12% of consumers opt
out of flexible charging each day.
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optimization, which cannibalizes some of the benefits from EV flexibility, the per-vehicle
EV contribution falls to £99.5°

To better understand how these reduced grid system costs might materialize, we esti-
mated that if all EVs had used IO Go in 2024, 1.87 GW of load would have been shifted
away from the highest demand hour in the country. Using demand data from the Na-
tional Energy System Operator’s Future Energy Scenarios, we added our estimated hourly
consumption effects from Figure 7 to hourly load values, and constructed what the load
duration curve would have looked like for 2024 with 100% adoption of managed charg-
ing (Panel A, Figure A6). Panel B zooms in on the top 100 consumption hours, illustrating

how managed charging could significantly reduce extreme peaks.

Looking ahead to 2050, the precise hourly impacts of managed charging are uncer-
tain, given expected changes in electricity pricing, renewable generation patterns, and
climate conditions. To approximate potential effects, we modified the 2050 load duration
curve by applying the estimated impacts from the four peak hours in Figure 7 to the top
four hours of each day in the 2050 load profile, assuming that the displaced consumption
would be evenly redistributed across the remaining hours. Under this scenario, the high-
est load hour in 2050 would experience approximately 5 GW less consumption (Panel C
and D in Figure A6).%°

5.3 Welfare impacts of subsidizing managed charging

We next evaluated the welfare implications of subsidizing managed charging, using
the £50/month incentive (total £150 across three months) offered to trial participants
as a proxy subsidy. We considered impacts over one, five, and 10 years (2024-2033),
discounting future values at the 3.5% rate recommended by HM Treasury (2020). Ten
years is a reasonable lower-bound estimate of vehicle lifetime (Bento et al., 2018; Held
et al., 2021; Kolli, 2011). However, the duration of benefits attributable to the subsidy
also depends on how long subsidized customers remain more likely than non-subsidized

customers to adopt IO Go. This compliance advantage may decay more quickly than the

33These system benefits estimates are consistent with existing industry and research findings, and sit at the lower
end of reported ranges. For instance, The Utility Playbook: Turning EV Grid Risk into a $30 Billion Opportunity (2025)
projects system savings of between $145 and $575 per actively managed EV by 2035.

56The consumption profiles were obtained from the National Energy System Operator’s Future Energy Scenarios,
which provides baseline profiles for 2024 and projections for 2050 under the assumption of 0% unmanaged charging.
To estimate the total load shift, our IV estimates were scaled by the total number of EVs on the road. Data on the
number of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) in 2024 were obtained from
the UK’s Vehicle Licensing Statistics, indicating a total of 2,107,897 vehicles. Projections for 2050 were also taken from
the Future Energy Scenarios, which forecast approximately 37.4 million EVs on UK roads by 2050.
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vehicle lifetime, although in our data the encouragement effect remains relatively stable

over the full year of observation.

The relevant welfare benefits in this case are (1) partial transfer of the subsidy to
consumers and (2) CO,e abatement. To estimate the share of the subsidy that constitutes a
transfer, we inferred the proportion of marginal versus inframarginal adopters. Adoption
was 6.98% in the email-only group and 9.31% in the £50/month group, implying that
25% of adopters were marginal.”” We assumed inframarginal adopters (75%) valued the
£150 incentive at its full face value (i.e., a 100% transfer of the total £150 to consumers).
For marginal adopters (25%), we assumed an average valuation of 50% of the subsidy.>®

Combining these assumptions yields an average transfer of £0.875 per £1 of subsidy.

For welfare benefits from CO,e abatement, we applied the estimated per-adoption
benefit discussed above, but scaled it down to reflect that only 25% of adopters were

induced by the subsidy.>”

We excluded reductions in trial participant bills from our
welfare calculation, invoking the envelope theorem: these trial participants could have
adopted IO Go without the subsidy but chose not to. We also assumed no producer sur-
plus changes (e.g., procurement cost savings for Octopus Energy), under the assumption
of a competitive retail electricity market. Finally, we excluded the indirect CO,e benefits
from increased EV adoption, since, again by the envelope theorem, a subsidy for man-
aged charging should not affect EV uptake among trial participants who were already

considering adoption.®?

Changes in costs to the government include: (1) the subsidy itself, (2) lost VAT revenue
from reduced electricity bills, (3) with greater uncertainty, a climate-related fiscal exter-
nality (increased tax revenue from higher economic growth due to the climate mitigation
from CO,e abatement), and, most speculatively, (4) avoided costs associated with elec-
tricity grid balancing. The VAT loss is calculated as 5% of the £343 annual reduction in
electricity bills, totaling £12.42 less government revenue per customer. This translates to

a fiscal cost of approximately £3.10 for each marginal IO Go adopter. The climate-related

57Calculated as (9.31-6.98)/9.31 = 25%. We used this formulation of the marginals as opposed to using the elasticity
approach as in Hahn et al. (2024) since we do not have a cost of adopting the tariff.

>8For marginal adopters, we do not observe whether the first or last £1 of the subsidy induced adoption. If it were the
first, the entire subsidy would be valued; if the last, the valuation would approach zero. Following the classic Harberger
triangle approximation to deadweight loss (Harberger, 1964), and the approach in Hendren and Sprung-Keyser (2020)
and Hahn et al. (2024), we assume a uniform distribution of latent subsidy valuations, consistent with a linear demand
curve.

59We used the point estimate of the CO,e impact, despite the statistical imprecision around that estimate.

60This welfare calculation deviates from our pre-analysis plan, but we believe these deviations more accurately reflect
the full set of social returns that would accrue under real-world implementation. For more details on exact deviations,
please see Appendix C.
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fiscal externality is 1.07%5%! of the monetized value of CO,e abatement attributable to IO
Go adoption. This amounts to £3.22 in additional government revenue per marginal IO

Go adopter.
In total, these costs and benefits imply an MVPF of 0.887 over 1 year, 0.933 over 5

years, and 0.982 over 10 years.%? For the remainder of the discussion, we focus on the
10-year estimate, while estimates for 1 and 5 years are presented in A20.5% This MVPF
implies that for every £1 of fiscal cost to the government, the program generated £0.982
in societal benefits. The fiscal cost includes not only the direct subsidy but also the loss of
VAT revenue due to lower energy bills, bringing the total cost per £1 of subsidy to £1.255.

(i.e., % =0.982). The ratio of these benefits to costs is then 0.982.6%

The change in government costs from avoided grid balancing are uncertain. They
may be zero. In a well-functioning electricity market, the benefits of shifting to lower-
marginal-cost generation and deferring investment in generation, transmission, and dis-
tribution infrastructure should be internalized by market participants. Thus, while the
overall system benefits of IO Go may be large, only a small share of those would accrue
to the government. However, if there are market failures such that the value of EV flex-
ibility is not fully internalized, there may be rationale for further policy intervention to
incentivize managed charging, such as subsidies.®®> We find that if £70 (48%) of the £146
in per-customer benefits in 2035 identified by Franken et al. (2025) were borne by the
government, the MVPF of the £150 subsidy would be infinite.®

61We assume that the UK accounts for 3.2% of global GDP (PwC, 2024), and that 33.5% of UK GDP accrues to
the government as tax revenue (Office for Budget Responsibility, 2024). The PwC estimates are a weighted average
of projections from national statistical authorities, EIKON from Refinitiv, IMF, Consensus Economics, the OECD, and
Fitch Solutions. We therefore use the PwC estimate as it consolidates projections from these institutions into a single
figure. The product of these shares yields 1.07%.

62 As noted above, the duration of benefits depends not just on vehicle lifetime, but also on how long subsidized
customers remain more likely than non-subsidized customers to adopt 10 Go.

63We also present MVPFs using two alternative SCC values: (a) Bilal and Kinzig (2024), which estimates an SCC of
$1,367 for 2024, and (b) Interagency Working Group on Social Cost of Greenhouse Gases, United States Government,
which estimates an SCC of $55.3 for 2024.

64We calculated this using:

xds+ Edx
MVPE = xds+ Vdx+ Cdx + Gdx (1)

where x is quantity and s the subsidy. E represents CO; benefits to individuals; V, C and G represent VAT, climate
change fiscal externalities, and avoided grid balancing costs respectively.

65This issue has some symmetry to the MVPF of healthcare subsidies, as the MVPF varies greatly depending on
whether low-income individuals pay for their own healthcare, hospitals do, or the government does (Finkelstein et al.,
2019).

661n this context, “infinite” does not mean literally unlimited welfare gains; rather, it is a formal term indicating that
the government’s net fiscal cost is negative, so, following Hendren and Sprung-Keyser (2020), the policy is treated as
having an infinite MVPF (a Pareto improvement).
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Figure 13: Marginal value of public funds of subsidizing managed charging over 10
years, 2024-2033
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Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over 10 years, from 2024-2033. Customer surplus is based on a decomposition of marginal and inframarginal
adoption under the £50/month offer, following the approach of Hahn et al. (2024). Direct CO,e benefits reflect emis-
sions reductions from shifting electricity use to cleaner hours, scaled to marginal adopters. Indirect CO;e benefits are
excluded under the assumption that Al managed charging subsidies do not affect EV uptake among inframarginal
adopters. Estimated costs to government include the subsidy, lost VAT revenue, and increased tax receipts from
climate-related fiscal externalities. Grid balancing benefits are shown separately, based on Franken et al. (2025) es-
timates of per-vehicle system savings under three scenarios. Only a share of these may accrue to government.

6 Generalizability to other countries

A natural external validity question is whether the effects we estimated in the United
Kingdom generalize to other markets. Octopus currently offers IO Go in seven countries,
of which four — Germany, Spain, the United States (Texas), and the United Kingdom
— have a substantial number of customers. Exact customer counts are commercially
sensitive and cannot be disclosed, but all four markets have sufficient adoption to allow
for meaningful comparisons of consumer behavior. Details on how IO Go is structured

in each market are presented in Table A14.

To assess whether treatment effects are likely to hold beyond the UK setting, we begin

by presenting descriptive statistics on customer behavior and charging demand patterns
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under IO Go in other countries. We then recalibrated our theoretical model to incorporate
the behavioral patterns observed in the data, to assess the welfare margins of RTP versus
10 Go.

6.1 Cross-country charging behavior

We examined three key EV charging dimensions in order to compare IO Go users
across countries. First, plug-in behavior, referring to how often and when vehicles are
connected to be ready to charge. Second, override (“bump") behavior, which measures
how frequently users intervene in supplier managed schedules. Third, consumption pro-
file throughout the day. Together, they show how the behavioral foundations of managed

charging vary across markets.

We present these three dimensions for the four countries: UK, Germany, Spain, and
United States. In addition, we also show the descriptive statistics for early adopters in
the UK, as defined by those who took up IO Go in the first six months since it was rolled
out. The UK has by far the most widespread usage of IO Go, with about two orders of
magnitude more customers than the other countries we analyze; we therefore present
statistics of early adopters, which could be more comparable to the customers from other

countries.

Across countries, UK customers were plugged in the least overall, and exhibited the
strongest variation in plug-in rates over the day (Figure 14). In contrast, customers in
other countries kept their vehicles connected for a greater share of the day. This may be a
pattern associated with earlier adopters rather than with the country itself; early adopters
in the UK had higher plug-in rates than later UK adopters. The lower daytime plug-in
rates among all but the earliest adopters in the UK suggest that customers there provided
the AI with fewer opportunities to optimize charging, while more constant plug-in avail-
ability likely enabled greater algorithmic flexibility in Germany, Spain, and the United
States.

Overrides ("bump charging”) were more common outside the UK, although still in-
frequent overall. Many customers across all countries never used the bump function at
all: 55% in the UK, 43% in Germany, 43% in Spain, and 56% in the United States (Fig-
ure 15). The highest share of bump-charged electricity occurred in Germany, where 3.3%
of EV electricity consumption resulted from overrides (Figure A22), and there was an
10.7% probability of bumping for each charge-day (Table A15). The patterns suggest a
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behavioral substitution: customers who plug in less frequently also tend to intervene less
often, whereas those who leave vehicles connected more consistently appear more likely
to occasionally override the Al schedule, though note that we do not have causal evidence

to support these hypotheses.

Figure 14: Plug-in Rate By Hour-of-Day

United Kingdom United Kingdom - Early Adopters Germany
Percentage 60%
of customers 29% Plugged In 39.4% Plugged In 33.1% Plugged In
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Notes: This figure plots, by hour of day, the percentage of active users who had their EVs plugged in. A user is
considered active during a given hour if that hour falls between their first-ever and last-ever recorded plug-in event.
We use a sample of 4,442 IO Go users across the four countries.

Despite higher rates of overriding outside the UK, the vast majority of charging still
occurred during overnight periods, as shown in Figure 16. Using EV charging data, the
figure plots average hourly EV consumption alongside average household electricity use
for a random sample of non-EV households in each country. Across all settings, IO Go
users displayed a pronounced overnight spike in charging — around 0.4 kWh per hour

— indicating that most charging remains concentrated in off-peak night-time hours.

In the UK field experiment, adoption of IO Go shifted roughly 0.5 kWh per hour of
consumption from peak to off-peak periods (i.e., our 42% reduction in peak consumption
observed in Figure 7). The magnitude of the overnight 0.4 kWh spike observed across
all four countries is broadly consistent with this shift, implying a similar volume of flex-

ible load from EV charging. This consistency suggests that the consumption response
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Figure 15: Proportion of Consumption Bump Charged Per Customer
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. The horizontal axis shows, for each customer, what share of their total consumption was through
overriding the schedule. The vertical axis shows the cumulative proportion of customers. We use a sample of 4,442 IO
Go users across the four countries.

identified experimentally in the UK is likely to be similar across other markets.

In this section, we observed higher and more consistent plug-in rates in non-UK mar-
kets (Section 6.1). As we saw in Section 3.6, plug-in behavior as an important aspect
of customer flexibility that influences when load shifting can occur. Thus, the observed
plug-in patterns abroad align with the potential for similar flexibility conditions outside
the UK. Taken together with the charging activity shown in Figure 16, these descriptive
results indicate that flexibility gains associated with AI managed charging could plausi-

bly extend across countries.

6.2 Cross-country robustness of the welfare gains of I0 compared to
RTP

We can now estimate welfare crossovers (for RTP vs. IO Go) across four major mar-
kets using observed override frequencies, tariff spreads, and empirical override magni-
tudes. Full calculations are in Appendix G.1. The expected welfare loss per override is
A= Ppeak Aleft q°, combining each country’s peak-landing probability, effective price dif-
ferential, and typical override energy. With RTP elasticity ¢ = —0.2 and a baseline welfare
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Figure 16: Cross-Country Consumption Profiles
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Notes: The figure plots hourly electricity consumption for a random sample of customers across IO Go countries.
Blue lines show EV charging consumption, based on telemetry data from IO Go users, while light purple lines show
household consumption among non-EV households. All panels use 2024 data, except Panel 2, which presents 2023
consumption data for customers who adopted IO Go during its initial rollout period (September 2022 — March 2023).

gap AW, = 0.095 per day,%” we compute the crossover rate f* = AW,/A at which IO and
RTP yield equal welfare. The results show that welfare losses per override vary widely
— approximately £0.07 in the United Kingdom, £0.05 in Germany, £0.03 in the United
States, and less than £0.01 in Spain — driven mainly by tariff spreads rather than user

behavior.

Observed override rates (0.019-0.107 per day) are an order of magnitude below the
corresponding partial-load crossovers. Consequently, IO remains strongly welfare-superior
to RTP in all markets, even when only one-quarter of load is automated (a = 0.25). Ger-
many represents the tightest case, reflecting its combination of frequent overrides and
moderate price differentials, but the observed behavior still lies well below the parity
threshold. The United Kingdom and Spain exhibit especially large welfare margins, while

the United States lies between the two extremes. Overall, these results indicate that in-

67The baseline welfare advantage of 10, AW, reflects the expected daily welfare gain from intelligent optimization
relative to RTP in the absence of overrides, computed under an attention cost of £0.20 per session and average charging
elasticity ¢ = —0.2. Where IO users allocate approximately 20% less flexible demand during peak hours compared with
RTP users.
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telligent charging is behaviorally robust: even with realistic user intervention rates, coor-
dination gains from automated scheduling easily outweigh the welfare cost of overrides

under current tariff and behavioral conditions.

7 Discussion

Our findings make three key contributions to the literature. First, we provided evi-
dence on how real-time managed charging can reshape EV charging behavior at scale in
the UK. Specifically, we found that managed charging led to a 42% reduction in house-
hold electricity demand during peak hours, with all of this demand shifted to low-cost,
low-emission off-peak periods overnight. In contrast to prior observational studies or
simulations, our randomized incentive design enabled clear causal inference about the

elasticity of managed EV charging consumption to energy system price signals.

These consumption impacts occurred without requiring manual input or sustained
behavior change from trial participants: over half of adopters never overrode the auto-
mated schedule, and override events comprised just 2.3% of electricity use. We showed
that this override metric is the sufficient statistic to compare such Al traiff versus RTP, and
thus highlights the potential of automation through Al to provide demand-side flexibility
while respecting EV owners’ preferences and constraints. The automation embedded in
IO Go appeared to enhance responsiveness to grid signals, especially during the evening

and overnight periods of the day.

Second, by comparing the outcomes of our randomized experiment with those from a
standard difference-in-differences design, our results suggest that the impact of managed
charging was relatively stable across different types of adopters. Impacts were homo-
geneous across cohorts of adopters in our difference-in-differences sample, and — after
reweighting our difference-in-differences sample to match the field experiment sample
on pre-adoption tariff, we found similar results between the two evaluations. Thus the
primary source of variation in impact appears to be baseline charging behavior, particu-
larly whether trial participants were already on smart or off-peak tariffs prior to adoption,

rather than any inherent heterogeneity in responsiveness to managed charging.

Third, we quantified the welfare impacts across four dimensions — consumer costs,
producer profits, environmental outcomes, and avoided costs associated with electricity

grid balancing. We found that the managed charging reduced participants bills substan-
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tially. It also caused reductions in CO,e emissions and retailer procurement costs. We

generalize the findings to three other international markets with EV penetration.
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A Tables

Table A1l: Experimental Balance

Variable Control Mean Email + £0/Mth Email + £5/Mth Email + £50/Mth Email + £50/Mth (No Bump)

Not Always Octopus Customer 0.26 0.00 0.00 0.00 0.00
(0.01) (0.02) (0.02) (0.02)

Octopus Tenure 2.72 -0.03 -0.01 -0.03 -0.01
[1.63] (0.04) (0.06) (0.06) (0.06)

Proportion Total kWh Peak 0.23 0.00 0.00 0.00 0.00
[0.08] (0.00) (0.00) (0.00) (0.00)

Smart Tariff Onboarding Processes 0.22 0.00 0.00 -0.01 0.00
[0.47] (0.01) (0.02) (0.02) (0.02)

Structural Winnings (GBP/kWh) 752.64 -9.72 -17.76 -26.70 -18.12
[684.94] (16.50) (25.08) (23.84) (25.02)

Total kWh 4,082.53 -42.42 -33.33 -65.43 -38.96
[2,599.11] (62.80) (97.97) (91.35) (94.82)

Total kWh Stdev 0.77 -0.01 -0.01 0.00 0.00
[0.25] (0.01) (0.01) (0.01) (0.01)

N 2,205 7,720 1,101 1,102 1,105

Note: The first column shows the mean and [standard deviation]| for the control group. Each row and each subsequent encouragement
column represents an individual regression of the row variable on an indicator for receiving the encouragement in the column. The
encouragements appear to be balanced on baseline characteristics. The standard errors are in parentheses. Density plots of these covariates
are shown in Figure A2. Detailed definitions of these covariates can be found in Appendix D.2.
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Table A2: Impact of Encouragements on Take-up of 10 Go

Dependent Variable: 10 GO
Model: (1)
Variables
Email + £0/Month 0.034*
(0.004)
Email + £5/Month 0.033™
(0.007)
Email + £50/Month 0.059"
(0.008)
Email + £50/Month (No Bump) 0.057*
(0.008)
Post-Incentive Period 0.004
(0.004)
Email + £0/Month x Post-Incentive Period -0.003
(0.004)
Email + £5/Month x Post-Incentive Period -0.006
(0.007)
Email + £50/Month x Post-Incentive Period -0.003
(0.006)
Email + £50/Month (No Bump) x Post-Incentive Period -0.016"
(0.006)
Fixed-effects
Block Yes
Week of Year Yes
Fit statistics
Control Mean (Incentive Period) 0.0365
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting 10
Go in the 12 months since emails were sent out. The outcome is a binary indicator
for weekly use of the Octopus Go tariff. Encouragement indicators are interacted an
indicator for whether the week is during the incentive period, three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and week, are reported in
the parentheses. Mean IO Go take-up rate during the incentive period is reported for
the control group. “Test £0 = £50" is the p-value on the test of equality between the first
and third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality
between the first and fourth coefficient.
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Table A3: Robustness, Impact of Encouragements on Take-up of IO Go, Daily Data

Dependent Variable: 10 GO
Model: (1)
Variables
Email + £0/Month 0.034*
(0.004)
Email + £5/Month 0.034*
(0.007)
Email + £50/Month 0.059**
(0.008)
Email + £50/Month (No Bump) 0.057*
(0.008)
Post-Incentive Period 0.004
(0.005)
Email + £0/Month x Post-Incentive Period -0.003
(0.005)
Email + £5/Month x Post-Incentive Period -0.006
(0.007)
Email + £50/Month x Post-Incentive Period -0.004
(0.007)
Email + £50/Month (No Bump) x Post-Incentive Period  -0.017*
(0.007)
Fixed-effects
Block Yes
Day Yes
Fit statistics
Control Mean (Incentive Period) 0.023
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 4,580,025

Clustered (Participant & Day) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting 10
Go in the 12 months since emails were sent out. The outcome is a binary indicator for
daily use of the Octopus Go tariff. Encouragement indicators are interacted an indicator
for whether the date is during the incentive period, which is the three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and day, are reported in the
parentheses. Mean IO Go take-up rate during the incentive period is reported for the
control group. “Test £0 = £50" is the p-value on the test of equality between the first and
third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality between
the first and fourth coefficient.
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Table A4: Impact of Encouragements on Electricity Consumption

Peak Off-Peak Overall Peak Off-Peak Overall

Model: (1) (2) (3) (4) (5) (6)
Variables
Email + £0/Month -0.029* 0.018 -0.005

(0.011)  (0.012) (0.007)
Email + £5/Month -0.011 0.018 0.004

(0.016)  (0.017) (0.010)
Email + £50/Month -0.013 0.025 0.003

(0.016)  (0.017) (0.010)
Email + £50/Month (No Bump) -0.033™ 0.026 -0.006

(0.016) (0.018) (0.010)
Any Encouragement -0.026™ 0.019* -0.004

(0.010)  (0.012) (0.007)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1.4 1 1 1.4 1 1
Observations 2,646,712 4,631,639 15,879,842 2,646,712 4,631,639 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Each column reports coefficients from separate regressions of hourly electricity consumption (in
kWh) on indicators for encouragement assignment. Columns (1), (2), and (3) estimate intention-to-treat
effects for each arm; columns (4), (5), and (6) pool all treatment arms into a single binary indicator. The
dependent variable is consumption during either the peak (16:30-20:30), off-peak (23:30-05:30), or over-
all hours. All regressions control for baseline consumption, and include fixed effects for week-of-year and
randomization block. Standard errors, clustered by participant and week, are reported in parentheses.
Means consumption for the control group are reported at the bottom of each panel.
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Table A5: Impact of Encouragements on Octopus Go Take-up

Dependent Variable: Octopus Go
Model: (1)
Variables
Email + £0/Month 0.0101™*
(0.0031)
Email + £5/Month 0.0099*
(0.0052)
Email + £50/Month 0.0045
(0.0049)
Email + £50/Month (No Bump) 0.0066
(0.0051)
Fixed-effects
Block Yes
Week of Year Yes
Fit statistics
Control Mean 0.025
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements
on adopting Octopus Go in the 12 months since emails were sent out.
The outcome is a binary indicator of for weekly use of the Octopus
Go tariff. The specification controls for fixed effects for randomization
block and week. Standard errors, clustered by participant and week, are
reported in parentheses. Mean Octopus Go take-up rate is reported for
the control group.
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Table A6: Selection into IO Go and Baseline Characteristics

Variable (1) (2) (3) (4)
Email + £0/Month 0.044 0.043 0.044 0.041
(0.005) (0.005) (0.005) (0.005)
Email + £5/Month 0.042 0.042 0.042 0.039
(0.008) (0.008) (0.008) (0.008)
Email + £50/Month 0.060 0.059 0.059 0.055
(0.009) (0.009) (0.009) (0.009)
Email + £50/Month (No Bump) 0.062 0.061 0.062 0.057
(0.009) (0.009) (0.009) (0.009)
Structural Winnings (Z-Score) -0.012 -0.005 -0.002
(0.002) (0.004) (0.005)
Baseline TOU Tariff 0.023 0.025 0.018
(0.007) (0.009) (0.008)
Baseline kWh -0.008 -0.009 -0.007
(0.004) (0.005) (0.004)
IMD Tercile 2 0.038 0.040 0.035
(0.007) (0.008) (0.008)
IMD Tercile 3 0.034 0.039 0.034
(0.007) (0.008) (0.007)
Octopue Tenure (Years) -0.006 -0.006 -0.005
(0.001) (0.002) (0.002)
Covariates + Covariates interacted + Nonparametric struc. winnings
Sq. Corr. Coef 0.0043 0.0072 0.0085 0.0093
p-score range [0.035, 0.19] [0.023, 0.22] [0.0002, 0.32] [0.006, 0.25]
p-score R2 with (1) 0.60 0.51 0.44

Note: This table shows the estimation results of a logit regression of takeup of IO Go on encouragement group and
participants’ baseline characteristics. We show the marginal effects at the means of the covariates.

Table A7: Robustness, Impact of EV Tariff on Peak Consumption (kWh)

Main 4 Instruments  £0/Mth  £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline No Week FE

Model: (1) (2) (3) 4) (5) (6) (7) (8) (9)

Variables

EV Tariff -0.581" -0.498" -0.697* -0.269 -0.305 -0.587* -0.473" -0.554 -0.568"
(0.224) (0.209) (0.247) (0.338)  (0.230) (0.236) (0.214) (0.336) (0.224)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Observations 2,646,712 2,646,712 1,980,876 663,401 660,592 662,359 1,307,900 2,646,712 2,646,712

First Stage F-Stat ~ 52.720 14.066 44.154 20.302 37.764 40.647 78.180 52.715 52.910

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during peak hours (16:30-
20:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main specification, also reported
in Figure 7; (2) defines a separate instrument for each encouragement group; (3) restricts to just the £0/Month group and the control group;
(4) restricts to just the £5/Month group and the control group; (5) restricts to just the £50/Month group and the control group; (6) just the
£50/Month (No Bump) group and the control group; (7) restricts to the 6 months after encouragement emails were sent out; (8) does not
control for baseline consumption. All specifications control for baseline consumption (except column 6), and fixed effects for randomization
block and week. Standard errors, clustered by participant and week, are reported in parentheses. The control mean is calculated over the
same time periods for control group trial participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A8: Robustness, Impact of EV Tariff on Off-Peak Consumption (kWh)

Main 4 Instruments  £0/Mth  £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline No Week FE

Model: (1) (2) (3) (4) (5) (6) (7) (8) 9)

Variables

EV Tariff 0.481* 0.468* 0.501* 0.284 0.280 0.414 0.686™* 0.118 0.488"
(0.261) (0.244) (0.282)  (0.400)  (0.269) (0.270) (0.236) (0.392) (0.260)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Observations 3,970,004 3,970,004 2,971,234 995,188 990,964 993,611 1,961,825 3,970,004 3,970,004

First Stage F-Stat 53.449 14.283 44.658 20.564 38.473 41.213 78.912 52.756 53.647

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during off-peak hours
(23:30-05:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main specification, also
reported in Figure 7; (2) defines a separate indicator for each encouragement group; (3) restricts to just the £0/Month group and the control
group; (4) restricts to just the £50/Month group and the control group; (5) just the £50/Month (No Bump) group and the control group; (6)
restricts to the 6 months after encouragement emails were sent out; (7) we do not control for baseline consumption. All specifications control
for baseline consumption (except column 6), and fixed effects for randomization block and week. Standard errors, clustered by participant
and week, are reported in parentheses. The control mean is calculated over the same time periods for control group trial participants not
enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.

Table A9: Robustness, Impact of EV Tariff on Overall Consumption (kWh)

Main 4 Instruments  £0/Mth £5/Mth  £50/Mth  £50/Mth (No Bump) 6 Months No Baseline No Week FE

Model: (1) (2) (3) 4) (5) (6) (7) (8) 9)

Variables

EV Tariff -0.079 -0.060 -0.125 0.032 -0.038 -0.132 0.002 -0.203 -0.071
(0.150) (0.140) (0.163) (0.226)  (0.150) (0.159) (0.154) (0.247) (0.150)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1 1 1 1 1 1 1 1 1

Observations 15,879,842 15,879,842 11,884,810 3,980,493 3,963,619 3,974,217 7,847,164 15,879,842 15,879,842

First Stage F-Stat 52.809 14.090 44.257 20.465 37.912 40.763 78.281 52.747 53.001

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on electricity consumption over the whole day. The instrument is
an indicator for assignment to any email-based encouragement. Columns (1) is our main specification; (2) defines a separate indicator for each
encouragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to just the £50/Month group and the control
group; (5) just the £50/Month (No Bump) group and the control group; (6) restricts to the 6 months after encouragement emails were sent out; (7) we
do not control for baseline consumption. All specifications control for baseline consumption (except column 6), and fixed effects for randomization
block and week. Standard errors, clustered by participant and week, are reported in parentheses. The control mean is calculated over the same
time periods for control group trial participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A10: Heterogeneity of IO Go Take-up, by IMD and Baseline Electricity
Consumption

x IMD x Baseline kWh

Model: (1) (2)
Variables
Email + £0/Mth x Tercile 1 0.021 0.029*
(0.018) (0.010)
Email + £0/Mth x Tercile 2 0.045* 0.050"
(0.009) (0.009)
Email + £0/Mth x Tercile 3 0.026* 0.016"
(0.007) (0.009)
Email + £5/Mth x Tercile 1 0.001 0.035*
(0.026) (0.016)
Email + £5/Mth x Tercile 2 0.052* 0.033*
(0.017) (0.015)
Email + £5/Mth x Tercile 3 0.022* 0.019
(0.011) (0.015)
Email + £50/Mth x Tercile 1 0.009 0.069
(0.031) (0.018)
Email + £50/Mth x Tercile 2 0.062* 0.064™
(0.018) (0.017)
Email + £50/Mth x Tercile 3 0.059 0.036™
(0.013) (0.016)
Email + £50/Mth (No Bump) x Tercile 1 0.050 0.080"
(0.033) (0.019)
Email + £50/Mth (No Bump) x Tercile 2~ 0.062" 0.045"
(0.017) (0.016)
Email + £50/Mth (No Bump) x Tercile 3 ~ 0.035" 0.009
(0.012) (0.015)
Tercile 2 -0.009 -0.013
(0.017) (0.012)
Tercile 3 0.010 -0.0005
(0.017) (0.013)
Fixed-effects
Block Yes Yes
Week of Year Yes Yes

Fit statistics
Observations 15,879,842 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in impact of encouragements
on take-up of 10 Go, interacting encouragement group with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption
terciles. The outcome is a binary indicator for weekly use of the Octo-
pus Go tariff. The specification controls for baseline consumption, and
fixed effects of randomization block and week of year. Standard errors,
clustered by participant week, are reported in parentheses.
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Table A11: Heterogeneity of Impact of EV Tariffs, by IMD and Baseline Electricity

Consumption
x IMD x Baseline kWh
Off-Peak Peak Off-Peak Peak
Model: (1) (2) (3) (4)
Variables
(EV Tariff) x (Tercile 1) 0.924 1.16 0.295 -0.300
(0.960) (1.08) (0.291)  (0.221)
(EV Tariff) x (Tercile 2) 0.604 -0.882* 0.504 -0.399
(0.388) (0.383) (0.316) (0.277)
(EV Tariff) x (Tercile 3) 0.508* -0.207 0.998 -0.759
(0.297) (0.269) (0.778) (0.725)
(Other Tariff) x (Tercile 2) 0.078 0.327* 0.059 0.182™
(0.127) (0.140) (0.072) (0.060)
(Other Tariff) x (Tercile 3) 0.098 0.218 0.131 0.441*

(0.127)  (0.138)  (0.134)  (0.125)

Fixed-effects
Block Yes Yes Yes Yes
Week of Year Yes Yes Yes Yes

Fit statistics
Observations 3,970,004 2,646,712 3,970,004 2,646,712

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in IV effects of EV tariff adop-
tion on hourly electricity consumption during off-peak (23:30-5:30) and
peak (16:30-20:30) periods, interacting EV tariff adoption with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption ter-
ciles. All specifications control for baseline consumption, and fixed ef-
fects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses.
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Table A12: Bump Charging and Baseline Characteristics

Dependent Variable: I(Ever Bumped)
Model: (1)
Variables
Constant 0.385™
(0.050)
ZEmail+£0/Mth 0.004
(0.032)
ZEmail+£5/Mth -0.063
(0.047)
ZEmail+£50/Mth -0.002
(0.045)
ZEmail+£50/Mth(NoBump) -0.002
(0.046)
Frac. of kWh During Peak (Z-Score) 0.039"*
(0.012)
Total Consumption (Z-Score) -0.006
(0.015)
Structural Winnings (Z-Score) 0.005
(0.016)
IMD Tercile 2 0.029
(0.043)
IMD Tercile 3 0.052
(0.041)
Octopus Tenure (Years) 0.007
(0.007)
I(Baseline TOU) 0.078"
(0.033)
Fit statistics
Observations 2,146
Dependent variable mean 0.45573

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports regression results where
the dependent variable is an indicator for whether
a participant has ever engaged in bump charging.
Explanatory variables include the encouragement
group assignment and baseline characteristics. De-
tailed definitions of these baseline characteristics can
be found in Appendix D.2.
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Table A13: Baseline Differences Between IO Go and Octopus Go Trial Participants

Variable IO Go Mean Octopus Go Mean 10 Go - Octopus Go  p-value
Octopus Tenure 2.51 2.58 -0.06 0.34
[1.65] [1.64]
Total kWh 3912.32 3753.20 159.12 0.076*
[2343.05] [2174.77]
Total kWh Stdev 0.77 0.77 0.00 0.74
[0.24] [0.22]
Not Always Octopus Customer 0.24 0.24 0.00 0.95
[0.43] [0.43]
Smart Tariff Onboarding Processes 0.34 0.26 0.08 0.00025***
[0.58] [0.51]
Structural Winnings (GBP/kWh) 687.70 684.59 3.11 0.9
[630.75] [592.95]
Proportion Total kWh Peak 0.22 0.23 -0.01 0.057*
[0.08] [0.08]

Note: Column (1) shows the mean and [standard deviation] for IO Go users; column (2) reports the same
for Octopus Go participants; column (3) shows the difference in means between columns (1) and (2);
column (4) reports the p-value from a two-sided t-test of equality of means. Detailed definitions of these
covariates can be found in Appendix D.2.
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Table A14: Overview of 10 Go Tariff Features by Country

Price during

Country Cheap charging charging window Additional Benefits Launch Date
6 hour window: 7p/kWh for the whole home

UK 23:30-05:30 7p/kWh between 23:30 and 05:30 May 2022
Dynamic based on  As per regular Lower per kWh rate

us forecasts tariff price when connected to IO Go December 2022

Germany . . . Super-cheap electricity for

(NB: changed as of 85‘88{3‘;880“’ Bn%l/rlr:\l/lvmh of the entire home between August 2023

June 2025) : ) ’ 00:00 and 05:00

Spain Eﬁf?ggﬁg based on 0.07/kWh n/a September 2024

Table A15: Bump Charging per Charge Day

Country Bumps/day Peak bumps/day Overnight bumps/day Daytime bumps/day
United Kingdom 0.019 0.003 0.003 0.013
United Kingdom - Early Adopters 0.022 0.005 0.003 0.015
Germany 0.107 0.019 0.008 0.080
Spain 0.105 0.007 0.027 0.071
United States 0.035 0.011 0.004 0.020

Note: This table presents the frequency of bumping each day there is a charge event, for each of the four major
countries where IO Go is active. This uses data from a random sample of 4,442 users across the four countries.
Peak times are defined as 16:30-20:30 for the UK, 17:00-21:00 for Germany, 20:00-00:00 for Spain, and 15:00-19:00
for the United States. Overnight times are defined as 23:00-5:00am, except in Germany, where IO Go there defines
overnight off-peak as 00:00-05:00. Daytime are all other non-peak and non-evening hours.
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B Figures

Figure A1l: Tariff Rates in 2024

Unit Rate
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(a) Intelligent Octopus Go

Unit Rate
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(b) Octopus Go

Notes: Panel (a) shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30-05:30, dark purple) and the peak daytime period (05:30-23:30, light purple). For comparison, we also in-
clude the Flexible Octopus tariff from Octopus Energy, which maintains a flat rate throughout the day. Panel (b) shows
analogous tariff rates for Octopus Go’s off-peak overnight period (00:30-5:30) and peak daytime period (5:30-00:30).
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Figure A2: Distribution of Baseline Covariates Across Encouragement Arms

Octopus Tenure (Years) Proportion Total kWh Peak Smart Tariff Onboarding Processes
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Notes: This figure plots kernel density estimates of baseline covariates across encouragement arms. The similarity of
these distributions illustrates that block randomization achieved good covariate balance across arms, consistent with
the regression-based balance tests reported in Table Al. Note that the variable ‘Not Always Octopus Customer’ has
been excluded, as it is a binary variable that is unsuitable for a density plot. Detailed definitions of these covariates
can be found in Appendix D.2.



Figure A3: Take-up of EV Tariffs Over Time by Trial Arms

Intelligent Octopus Go Intelligent Octopus Go or Octopus Go
Takeup
(percentage

points)

20% 20%
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0%] 0%

0 5 10 0 5 10

Month Since Email

-+ Control Email + £0/Mth — Email + £5/Mth — Email + £50/Mth Email + £50/Mth (No Bump)

Notes: This figure plots the fraction of trial participants in each trial group that has taken up an EV tariff. The left panel
shows take-up of the Al managed charging tariff, IO Go, which combines static time-of-use pricing with remote control

of EV charging. The right panel shows take-up of either IO Go or Octopus Go, the latter being a static time-of-use tariff
without supplier control.
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Figure A4: Probability of First-Ever Opening Emailed Encouragement
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Notes: This figure plots the cumulative proportion of customers who first opened an encouragement email over time.
Solid lines show Kaplan—-Meier survival estimates of the probability of not yet opening, with shaded areas denoting
95% confidence intervals. Time is measured from the date of the encouragement email until the first observed open.

Figure A5: Completion Rate for Participants Signing Up for IO Go

Onboarding
Completion
Rate

75%

50%

25%

0,
0% Control (Pure) Email + £0/Mth ~ Email + £5/Mth ~ Email + £50/Mth  Email + £50/Mth

(No Bump)
Notes: This figure shows the percentage of participants who, after attempting to sign up for IO Go during the incentive
period, successfully completed the onboarding process. Completino of onboarding includes testing the compatibility
of their vehicle or charger with the IO Go app.
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Figure A6: Load Duration Curves
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Notes: This figure shows load duration curves for 2024 and the forecasted load duration curve for 2050. The unmanaged
charging consumption profile is based on demand modelling data from the UK National Energy System Operator’s
Future Energy Scenarios. To estimate the impact of managed charging in 2024, we applied the hourly coefficients from
our IV estimates (Figure 7) to the corresponding hourly load values. For 2050, we assumed that managed charging
would primarily affect the four daily peak hours. We therefore applied the estimated effects from the four peak hours
in Figure 7 to the corresponding top four hours in each day of the 2050 load profile. The resulting reductions in peak
consumption were assumed to be evenly redistributed across the remaining hours of the day.

87


https://www.neso.energy/publications/future-energy-scenarios-fes

Figure A7: Difference Between Unmanaged and Managed Load Duration Curves at
Selected Hours

2024 2050
GW Difference 6
(Unmanaged - Managed)

5
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Notes: The bars show the difference in load (unmanaged minus managed) at several positions along the load-duration
curve in Fig. A6. Values are taken at load hours 1, 25, 50, 75, and 100 for the years 2024 and 2050.
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Figure A8: Heterogeneity by Index of Multiple Deprivation
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Notes: This figure presents heterogeneity in treatment effects by Index of Multiple Deprivation (IMD) terciles. Panel A
shows the effect of each encouragement group on take-up of IO Go, interacting encouragement with deprivation tercile
(T1: most deprived); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue)
periods, again interacting EV tariff adoption with deprivation tercile; regression results are also presented in Table A11.
Panel C shows the proportion of trial participants in the experimental sample in each tercile. Confidence intervals are
shown at the 95% level. All specifications control for baseline consumption, and fixed effects for randomization block
and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by participant
and week.
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Notes: This figure presents heterogeneity in treatment effects by property value terciles. Panel A shows the effect of
each encouragement group on take-up of IO Go, interacting encouragement with property value tercile (T1: most
deprived); regression results are also presented in Table A10. Panel B displays the estimated IV effects of EV tariff
adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue) periods,
again interacting EV tariff adoption with property value tercile; regression results are also presented in Table A11.
Panel C shows the proportion of trial participants in the experimental sample in each tercile. Confidence intervals are
shown at the 95% level. All specifications control for baseline consumption, and fixed effects for randomization block
and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by participant

and week.

Figure A9: Heterogeneity by Property Value
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Figure A10: Heterogeneity by Baseline Electricity Consumption

A.
£50/Mth
£0/Mth £5/Mth £50/Mth (No Bump)
Effect on 0.12
Take-up
of 10 Go
0.08
0.04 * +
0.00f---=-==-=--===------ *— ------------------------------------------------------------------
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
(Lowest) (Lowest) (Lowest) (Lowest)
Baseline Consumption Tercile
B C.
Off-Peak Peak
Effect on Mean Hourly
Hourly 2 Consumption
kWh (kwh) 15
1
i
O c e S oo 0.8 ,
-1 0.4
-2
0.0
T1 T2 T3 T1 T2 T3 T1 T2 T3
(Lowest) (Lowest)
Baseline Consumption Tercile Baseline Consumption Tercile

Notes: This figure presents heterogeneity in treatment effects by baseline total consumption (kWh). Panel A shows
the effect of each encouragement group on take-up of 10 Go, interacting encouragement with deprivation tercile (T1:
lowest consumption); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue)
periods, again interacting EV tariff adoption with baseline consumption tercile; regression results are also presented
in Table A11. Panel C shows mean hourly consumption for each tercile, with 95% standard error bars. Confidence
intervals are shown at the 95% level. All specifications control for baseline consumption, and fixed effects for random-
ization block and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by
participant and week.
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Figure A11: Customers’ Preferences Over Time

(a) Changing Preferences Over Time
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Notes: This figure summarizes how frequently IO Go customers change their preferences. Panel (a) shows what pro-
portion of customers changed their preferences in the weeks after adopting IO Go; (b) displays the CDF of the number
of times customers change their preferences, split by week since adoption of IO Go
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Figure A12: Participant Preferences and Behaviors
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Notes: This figure summarizes IO Go customer preferences and behavioral patterns. Panel (a) shows the joint distribu-
tion of customer-selected end state of charge and charge completion time, as specified via the Octopus app. Panel (b)
displays the frequency of plug-in and unplug times.
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Figure A13: Preferences for End State of Charge and Completion Time - By
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Notes: This figure shows the joint distribution of customer-selected end state of charge and charge completion time,
as specified via the Octopus app. The trial participants are split by the encouragement group they were randomly

assigned.
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Figure A14: Preferences for End State of Charge and Completion Time - By
Encouragement Group
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Notes: This figure shows the frequency of plug-in and unplug times. The results are shown separately by randomized
encouragement group.

Figure A15: Distribution of Proportion of Charge-Hours Bumped Per Customer
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. The horizontal axis shows, for each customer, what share of their total charge-hours was “bumped"
(overridden). The vertical axis shows the cumulative proportion of customers. Charge-hours here are hours where any
charging occurs.
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Figure A16: Bump Charge Behaviors - By Encouragement Group

Frac. of Users Frac. of Consumption
That Never Bump That is Bump Charge
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the Al managed
charging schedule. Results are shown separately by randomized encouragement group. The left panel shows the
proportion of trial participants who never used bump charging. The right panel shows the share of total electricity

consumption that came from bump charging.

Figure A17: Comparison of Baseline Consumption Profiles

Average
Hourly
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Notes: This figure shows baseline hourly electricity consumption patterns for customers included in the DiD and RCT
analyses. For the DiD sample, baseline refers to consumption prior to adopting IO Go. For the RCT sample, baseline
refers to control group participants who were not on an EV tariff. "Flat" indicates customers who were on a flat tariff
before switching to IO Go, while "ToU" refers to those previously on a time-of-use tariff. The average daily consumption
during the baseline period was 1.1 kWh for DiD-Flat customers, 1.02 kWh for DiD-ToU customers, and 1.0 kWh for
the RCT control group. The shaded areas represent 95% confidence intervals, with errors clustered at the account user

level.
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Figure A18: Difference-in-Differences Estimate of IO Go, by Hour-of-day

Treatment Effect
on Hourly
Consumption
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Notes: This figure reports effect of adopting the IO Go tariff on hourly electricity consumption (in kWh), split by
hour of the day. These are estimated using a sample of 20,249 customers who first-ever enrolled in IO Go in 2023,
weighted by whether the customer was previously on a time-of-use tariff. Estimates are computed using the Callaway
and Sant’Anna (2021) estimator. Confidence intervals are shown at the 95% level.

Figure A19: Cohort Specific Difference-in-Differences Estimate of IO Go
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Notes: This figure reports cohort-specific estimates of the effect of adopting the IO Go tariff on hourly electricity con-
sumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-5:30). These are estimated using
a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by whether the customer was previ-
ously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna (2021) estimator. Confidence
intervals are shown at the 95% level.
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Figure A20: Marginal value of public funds of subsidizing Al managed charging
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(b) 5 years, 2024-2028

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of (a) 1 year, and (b) 5 years. Customer surplus is based on a decomposition of marginal and
inframarginal adoption under the £50/month offer, following the approach of Hendren and Sprung-Keyser (2020).
Direct COje benefits reflect emissions reductions from shifting electricity use to cleaner hours, scaled to marginal
adopters. Indirect COje benefits are excluded under the assumption that managed charging subsidies do not affect
EV uptake among inframarginal adopters. Estimated costs to government include the subsidy, lost VAT revenue, and
increased tax receipts from climate-related fiscal external"ﬁ' s. Grid stabilization benefits are shown separately, based
on Franken et al. (2025) estimates of per-vehicle system sa fgs under three scenarios. Only a share of these may accrue
to government.



Figure A21: Marginal value of public funds of subsidizing Al managed charging,
Alternative SCC
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(b) 10 years, SCC from Interagency Working Group

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of 10 years. Panel (a) uses the SCC estimate from Bilal and Kénzig (2024); panel (b) uses the SCC
estimate from Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Customer
surplus is based on a decomposition of marginal and inframarginal adoption under the £50/month offer, following
the approach of Hendren and Sprung-Keyser (2020). Direct COje benefits reflect emissions reductions from shifting
electricity use to cleaner hours, scaled to marginal adopter98ndirect CO;e benefits are excluded under the assumption
that managed charging subsidies do not affect EV uptake among inframarginal adopters. Estimated costs to govern-
ment include the subsidy, lost VAT revenue, and increased tax receipts from climate-related fiscal externalities. Grid
stabilization benefits are shown separately, based on Franken et al. (2025) estimates of per-vehicle system savings un-
der three scenarios. Only a share of these may accrue to government.
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Figure A22: Scheduled and Bump Charging, By Hour-of-Day

Notes: This figure plots, by hour of day, the percentage of electricity consumption that occurred during that hour. This
consumption is further divided into charging triggered by bump (charging initiated by users overriding the schedule)
versus charging scheduled by IO Go. We use a sample of 4,442 IO Go users across the four countries.
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Figure A23: Estimated Impact of IO GO, by “Bump" (Override) Behavior

-0.50

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates for
customers who (i) have “bumped"”, or overridden the supplier managed schedule, and (2) who have never bumped.
Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed
using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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Figure A24: Estimated Impact of IO GO, by User Preferences

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the 10 Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates
for customers by their settings for when they need the car ready and how much charge is needed: (1) default or less
ambitious - 8:00 a.m. ready-by time and 80% charge, or later/lower, (2) ambitious — either an earlier ready-by time
or higher charge, and (3) most ambitious — both earlier and higher charge. Estimates are also separately estimated by
peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed using the Callaway and Sant’Anna (2021)
estimator. Error bars represent the 95% confidence interval.
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C Deviations from the Pre-Analysis Plan

This experiment was pre-registered with the American Economic Association (AEA)
under Trial No. 0013037. While we aimed to follow the pre-analysis plan (PAP) as closely
as possible, a number of deviations became necessary in the course of implementation
and analysis. Below, we detail the key departures from the PAP. Where applicable, corre-

sponding changes to regression specifications are noted via footnotes in the main text.

* Data: Originally, our consumption data was to be aggregated on the hour (e.g.,
00:00, 01:00, etc.). However, IO Go tariff rates begin on the half-hour (e.g., 23:30
rather than 00:00), we adjusted our data aggregation accordingly. All half-hourly

data was therefore aligned to begin on the half-hour mark.

* Data: We had pre-specified that electricity consumption data would be aggregated
to the hour-day level. However, due to computational constraints in processing and
analyzing high-frequency data, we instead aggregated consumption to the week x

hour-of-day level.

* Data: We included 12 months of post-encouragement data, rather than the 6 months
originally proposed, as we initiated our analysis later than anticipated and took ad-
vantage of the longer available data window. This change in data window does not
substantively change our results, as shown in column (7) of Table A7, Table A8, and
Table A9.

* Analysis: To improve precision and account for pre-existing consumption patterns,
we included a control for baseline average hourly electricity consumption in our
regression models. This adjustment was not pre-specified, but we show the version
of the regression that does not include baseline consumption in column (8) of Ta-
ble A7, Table A8, and Table A9. Coefficients for the peak consumption and overall
consumption are similar, while the coefficient for the off-peak consumption changes
from 0.515 (main specification) to 0.164 (no baseline consumption). We view this
more as a loss of precision than of a substantive change in the underlying effect.
As can be seen in Column (8), without baseline consumption as a control, the esti-
mates become extremely noisy, and are statistically indistinguishable from the main

specification.
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* Analysis: Our pre-specified IV analysis planned to use the randomized encourage-
ments as instruments for just IO Go adoption. However, given that the randomized
encouragements increased enrollment in both Intelligent Octopus Go and Octopus
Go, we defined treatment as adoption of either EV tariff, rather than IO Go alone.
This adjustment was necessary to preserve the exclusion restriction in our instru-
mental variables analysis, a requirement we did not know would be necessary at the

outset of the trial.

* Analysis: Following the concerns raised in Mogstad et al. (2021) regarding the in-
terpretation of IV estimates with multiple instruments, we use a single binary in-
strument combining all encouragement groups. This approach helps avoid com-
plications such as negative weights and improves interpretability under a common
first-stage assumption. We report results from our pre-specified analysis using the
four instruments separately in Figure 7, Table A7, Table A8, and Table A9. These in-
clude both the joint specification with all four instruments and separate regressions

where each encouragement serves as an instrument individually.

e Analysis: Our pre-specified DiD sample included all customers who adopted 10
Go in 2023. In the final analysis, our DiD analysis restricted the sample to cus-
tomers who likely owned an EV by December 2022. This was to ensure that ob-
served changes in consumption patterns are due to changes in charging behavior,
rather than the initial uptake of EVs. We also re-weighted this restricted DiD sam-
ple by pre-adoption tariff to better understand the extent to which differences be-
tween RCT and DiD were due to pre-adoption tariff (this re-weighting was not pre-
specified). We also added a separate DiD analysis of customers who adopted DiD in
2024, which was not pre-specified. However, this analysis is not a part of our main

findings, as detailed in Appendix F.

* Analysis: For our DiD analysis, we prespecified restricting control cohorts to cus-
tomers who adopt IO GO within 30 days. However, our final analysis used a twelve-
week window. This was to balance comparability of treated and control groups
against the length of the post-adoption estimation horizon. Comparability was as-
sessed by examining pre-treatment trends, and we selected the longest horizon that
yielded satisfactory pre-trend balance. Additionally, we added an anticipation pe-
riod, which was not part of the original specification. This decision followed a re-
view of pre-trends, especially in the 2024 analysis, where we observed a rise in

off-peak consumption in the four weeks before IO Go adoption (Figure A29b).
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* Welfare: In keeping with the pre-analysis plan, we used the £150 incentive as a
proxy subsidy, with J-PAL as proxy government. However, we refined our welfare
analysis to better capture the long-term and system-wide implications of the inter-
vention. To this end, we looked at CO,e impacts over a 10-year time period; exam-
ined how the MVPF would change when we included avoided grid balancing costs;
and included lost VAT as an extra cost to the government of the subsidy. While these
additions increase the measured benefits, we believe they more accurately reflect
the full set of social returns that would accrue under real-world implementation. In
keeping with the pre-analysis plan, we assumed that trial participants who enrolled
in response to the £0/month email reflected inframarginal participants, while the
incremental take-up in the £50/month group represented marginal adopters with
an average willingness to pay equal to 50% of the subsidy, consistent with standard

MVPF assumptions.

* Welfare: We originally pre-specified estimating CO,e impacts using the ITT frame-
work. We did not pre-specify the use of IV estimation for bills or CO,e savings. We
adopted the IV approach here because it more directly captures the causal effect of
IO Go adoption — the quantity of substantive interest. While our pre-analysis plan
focused on MVPF calculations rather than consumer bills, we now report bill sav-
ings as well, as they provide an important and policy-relevant measure of consumer
benefits.
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D Additional details on design of field trial

D.1 Reproduction of email-based encouragements

Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an Electric Vehicle?

If you do have an Electric Vehicle, Intelligent Octopus Go could save you up to £700 a year.

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligent Octop is the UK’s most popular EV tariff and it works with
more than 280 electric car models and chargers. And, when you sign up to Intelligent Octopus Go,
you get the following benefits:

Potential savings of up to £700 a year via smart charging at a super low rate alongside six
hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling your

charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more ti
600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save even

more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our
other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

y questions? Just reply to this email.
Love and Power,

Alex Schoch

Figure A25: Randomized Encouragement Group 1 (Email + £0/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills.
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Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in March, we will pay you up to £15 over April, May and June for each day you stay on
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligen us is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £5 per month during April, May and June for being on Intelligent
Octopus Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.

Love and Power,

Alex Schoch

Figure A26: Randomized Encouragement Group 2 (Email + £5/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £15.
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Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in March, we will pay you up to £150 over April, May and June for each day you stay on
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligen us is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during April, May and June for being on Intelligent
Octopus Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.

Love and Power,

Alex Schoch

Figure A27: Randomized Encouragement Group 3 (Email + £50/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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Hi [%first_name | there%],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in February, we will pay you up to £150 over March, April, and May for each day you
stay on Intelligent Octopus Go. This offer is valid for the next 14 days — through Feb 29.

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intellige is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during March, April, and May for being on Intelligent
Octopus Go minus £2.00 for each day that you “bump charge” by using the Octopus app to
instantly charge your EV or otherwise suspend automated charging with Intelligent Octopus
Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling

your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell it here heck if 're_eligibl

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.
Love and Power,

Alex Schoch

Figure A28: Randomized Encouragement Group 4 (Email + £50/Mth, No Bump)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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D.2 Block randomization implementation

We implemented block randomization on trial participant account identifiers using

Mahalanobis distance calculated over the following pre-encouragement variables:

1. Tenure with Octopus: Years since a customer’s earliest import tariff contract with

Octopus Energy (as of August 31, 2023).

2. Total Consumption (kWh): Total electricity use (kWh) from February 15 to August
31, 2023, aggregated across all half-hourly smart meter readings.

3. Consumption Variability (kWh): Standard deviation of half-hourly consumption

over the same period.

4. Not Always Octopus Energy Customer: Binary flag for whether a trial participant
originally joined Octopus via acquisition (e.g., from Bulb, Co-op) or Supplier of Last

Resort procedures.

5. Smart Tariff Onboarding Attempts: Count of historical attempts to enroll in Octo-
pus smart tariffs (e.g., Intelligent Octopus Go) prior to February 15, 2024. Includes

cases where customers initiated but did not complete the process.

6. DNO Region: Categorical variable for the customer’s Distribution Network Oper-
ator region. For accounts with multiple active meter points, we used the region
linked to the most recent tariff as of August 31, 2023.

7. Expected Structural Winnings: Estimated monetary difference between a customer’s
actual electricity cost (under observed tariff contracts) and a counterfactual IO Go
contract from February 15 to August 31, 2023. We assumed an off-peak rate of
£0.075/kWh and a peak rate of £0.30/kWh for IO Go, and ignored taxes, standing

charges, and regional price variation.

8. Peak-Hour Consumption Share: Proportion of total electricity usage (Feb—Aug 2023)
occurring during 16:00-20:00, a period of high grid constraint.

Full details of structural savings calculations and data preparation are available upon

request.
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E Variance decomposition of bump behavior

We conducted a variance decomposition to quantify the relative contributions of dif-
ferent factors to the overall variability in bump charging behavior. Using hourly charging
data, we regressed an indicator for whether charging occurs via bump charging on a set
of fixed effects and temperature controls. Specifically, we estimated the following speci-

fication:
_ k
I(Bump;,) = a;+ps + yn+ ¢, + Zﬁk Temp; .1 + €ints (12)
k

where I(Bump;;,) is an indicator equal to one if customer i engaged in bump charging
during hour h on date t. The term «a; denotes customer fixed effects, y; date fixed ef-
fects, y;, hour-of-day fixed effects, and 1, region fixed effects corresponding to the 14 UK
Grid Supply Point (GSP) regions. The temperature controls, Tempf.‘,tﬂ, are indicators for
ten bins of next-day temperature, included to capture anticipatory charging responses to
expected weather conditions. For each customer, temperature was assigned using obser-
vations from the geographically closest UK Met Office weather station to the customer’s
postcode. The UK Met Office is the national meteorological service of the United King-
dom. We run this regression for our experimentla sample, as well as the random sample
of UK IO Go users, described in Section 6.

The variance decomposition can be expressed as:

Var(Y;;) = Var(a;) +Var(pu;)+ Var(yy)+ Var(y,) (13)
~_— —_——— — ~—
Household FE Date FE ~ Hour FE  Region FE

+ Var(f - Temp; , 1)+ 2-Cov(-,-) +Var(e;;) (14)
—_—— —_——
Temperature effect ~ Covariance terms  Residual

As shown in Table A16, customer fixed effects accounted for the vast majority of the
variation in bump charging behavior, explaining 0.274 of the total variance in the RCT
sample. Hour-of-day and region fixed effects contributed an additional 0.088. This dom-
inance of customer fixed effects indicates that bump charging is largely idiosyncratic
rather than correlated, making it unlikely to generate coincident demand spikes that
would strain the grid. The UK IO Go adopters sample show similar results, with cus-

tomer fixed effects as the main source of variation.
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Table A16: Decomposition of Variance in Bump Behavior

Component Share (RCT Sample) Share (UK Sample)
Customer FE 0.274 0.296
Date FE 0.003 0.001
Hour FE 0.060 0.008
Region (GSP) 0.031 0.001
Next day temperature 0.000 0.000

Note: This table reports the variance decomposition of bump charging behavior based on the
regression specification in Equation (13). Each entry shows the share of total variance in the
bump charging indicator explained by the corresponding component.

F 2024 difference-in-differences

As discussed in Section 4.1, we also conducted a DiD analysis focusing on customers
who adopted IO Go in 2024. However, identifying which customers already owned an
EV at the start of 2024 was difficult. This challenge likely reflected increased uptake of
low-carbon technologies (LCTs). Of particular note, heat pump installations rose sharply
at the end of 2023, following the UK Government’s expansion of heat pump subsidies in
October 2023.

To mitigate this issue, we restricted the sample to customers who appeared to own
an EV as of August 2023. We chose August 2023 because it was both (1) before the in-
crease in heat pump subsidies and (2) during summer months when heat pump use was
minimal. Nonetheless, adoption of other LCTs may still have confounded our estimates
by increasing customers’ engagement with tariff selection. This confounder was docu-
mented by Bernard et al. (2024), who examined households that received heat pump in-
stallations from Octopus Energy. They found that following the installation, two-thirds
of these households adopted a smart tariff, with Intelligent Octopus being the most popu-
lar choice, possibly due to adoption of an EV at a similar time.®® We presented the results

of the 2024 DiD analysis but advised caution in their interpretation.

We began with a sample of 146,143 customers who adopted IO Go at some point in
2024. To be included in the final sample, customers had to have been with Octopus
Energy by August 2023, had smart-meter data available at that time, and likely owned
an EV as of August 2023. We excluded 2,039 customers who were already part of our
randomized controlled trial. After these restrictions, the final analysis sample consisted

of 9,317 customers.

68 Additionally, in an internal survey, 25% of customers with a heat pump reported being on IO Go; it is therefore
plausible that heat pump adoption itself encouraged switching to IO Go.
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Our empirical strategy mirrored the 2023 DiD analysis. We used “not-yet-treated"
customers as controls and defined an anticipation period of four weeks, using the five
weeks prior to IO Go adoption as the reference period. We limited control cohorts to those
scheduled to adopt IO Go no later than twelve weeks after the treated group’s anticipation
period ended. Finally, we estimated a weighted version of the model to match the 2024

DiD sample to the RCT sample based on pre-treatment tariff type.

Similar to the 2023 results, Figure A29 showed that the unweighted difference-in-
differences estimates were smaller than those from the RCT. After reweighting the 2024
DiD sample to align with the RCT’s pre-treatment tariff distribution, the estimated in-
crease in off-peak consumption (0.548 kWh) closely matched the RCT estimate (0.481
kWh). The reduction in peak consumption was smaller in the DiD analysis: 0.269 kWh
compared to 0.581 kWh in the RCT.

Diverging from the 2023 analysis, the decline in daytime, non-peak consumption did
not fully offset the increase in off-peak consumption, resulting in an overall rise of 1.53
kWh per day, an 8% increase in total consumption. We believe this likely reflected con-
current adoption of other LCTs, such as heat pumps, during the same period. There was
tentative evidence of this in the off-peak anticipation period in Figure A29b, although

without direct data on LCT ownership, we could not confirm this hypothesis.
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Figure A29: 2024 Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-05:30),
using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024. Each panel plots treatment effects relative
to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted by
whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway and
Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption levels.
Post-treatment effects are estimated using average of all group-time average treatment effects, with weights propor-
tional to the group size.
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Figure A30: 2024 Difference-in-Differences Estimate of IO Go, by Hour-of-day
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Notes: This figure reports effect of adopting the IO Go tariff on hourly electricity consumption (in kWh), split by hour
of the day. These are estimated using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by
whether the customer was previously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna
(2021) estimator. Confidence intervals are shown at the 95% level.
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G Theoretical Model

G.0.1 Environment and Notation

Time is divided into settlement periods h = 1,...,H. Each EV-owning household i
requires E; kWh by ready-by time T;, has plug-in availability A; C {1,..., H}, maximum
charge rate x;, and charging efficiency #;;. Baseline (non-EV) load is b;;, with aggregate
by, =) ; b;y,. Total system load is

Qn = by + inh~

i

Retailer costs are c;(Qy,) (convex) and ancillary/avoided benefits r;,(Qy) (concave). De-

fine the system shadow price
& = ¢,(Qn)—1,(Qp), (15)

as in convex scheduling (Boyd and Vandenberghe, 2004; Joskow and Tirole, 2006b). House-
holds derive mobility utility U;(E;) (increasing, concave) and timing disutility ;(h) > 0.
Under RTP, they face attention/optimization cost 4; > 0 and risk penalty y; > 0 on bill
variance (Borenstein, 2007). Under IO (AI scheduling), they can override at a hassle cost
¢; > 0.

We compare four tariffs:®

1. Flat: price p2t.

2. ToU: pPeak > poff across fixed windows.

3. RTP: hourly pETP ; households self-schedule.

4. 10 (AI managed): centralized schedule {x;,} against {¢},}; users may override.

%90ur framework builds on Joskow and Tirole (2006b), who study the welfare properties of RTP under convex
scheduling. Their analysis contrasts RTP with the absence of RTP. Where we depart is in the introduction of (i) al-
gorithmic intermediation (IO) as a distinct pricing/coordination regime, and (ii) frictions such as override behavior,
execution costs (m;, ¢;), and aggregate override thresholds (5*). These extensions allow us to bring the theoretical
framework into closer alignment with experimental data, in particular by capturing behavioral deviations from the
frictionless convex scheduling benchmark.
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The feasible EV-charging schedules satisfy”"

Z NinXin = Ej, 0 <xj <% (16)
hSTi,hEAi

Elasticity by operative signal. Let nﬁ be the operative signal under regime k € {IO,RTP, ToU}

with nh =&, 0 = pRIT, oY = ploV. Define
dIn QF
dInm,

evaluated in high plug-in hours (Q’h‘ > 0). Let ¢;, denote marginal CO, emissions (kg/kWh).

G.0.2 Household and Aggregator Problems

RTP household problem. A household chooses {x;;} to minimize expected cost plus

frictions:”!

mln IE[ ZpRTPx,h] + 7 Var( ZpRTPxih) + Zgbi(h)xih +a; - 1{actively scheduling}
h

xzh
(18)
s.t. Z Ninxin > E;, 0 <xj, < X;.
h<T;, heA;
At interior hours, first-order conditions (FOC) take the (mean—variance) form
E[p; "1+ 2y COV( A ZPRTP i€) +i(h) = pinin, (19)

with y; > 0 the KKT multiplier on the energy requirement. The attention cost a; > 0

drives corner solutions by discouraging small reallocations.”?

7OWe model EV-only RTP for comparability to IO (which optimizes EV load). If non-EV end uses are price-responsive
under whole-household RTP, the welfare gap AW, generalizes accordingly; our empirical mapping focuses on the EV
subproblem.

7IThis functional form is inspired by Borenstein (2007); Gabaix (2019) who modeled variations of an expected ex-
penditure minimization augmented with cognitive and risk terms.

72Derivation of (19): Rewrite the energy requirement as a KKT-friendly inequality g;(x) = E; — Y h<T,, heA; NinXin <0
with multiplier y; > 0. Let S;(x,p) =Y j, pRTPXIh be the (random) daily bill. Ignoring the fixed attention cost a; (which
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I0 aggregator problem. The IO scheduler minimizes social cost plus timing disutility:

min Z[Ch Q) =1 Qh] Zle ) Xin (20)

{xlh}

s.t. Z Ninxin =2 E;, 0 <xj; < X;.
hSTi,hGAi

The objective is convex and the constraints are affine; under Slater’s condition (capacity
slack), KKT are necessary and sufficient (Boyd and Vandenberghe, 2004).

G.0.3 Core Lemmas and Propositions

Standing assumptions for this subsection. (i) ¢,(:) convex, r;(-) concave, so ¢}, is non-
decreasing in Qy; (ii) price-taking (a single household does not affect ¢;,); (iii) Slater’s
condition holds for Eq. (20)-Eq. (16) (there exists feasible slack).

Lemma G.0.1 (Peak shaving under IO (merit-order via KKT)). Under assumptions (i)—(iii),
define the adjusted hourly cost
cp+i(h)

Nin

(a) For each i, an IO optimum allocates charging to hours with the lowest available «;;, subject

Kin =

to Eq. (16). (b) If there exist feasible peak and off-peak hours p,o with x;, > «;,, then x;, >0

does not depend on {x;;} and thus only affects the extensive/corner decision), the Lagrangian is

£ = E[S;] + yi Var(S Z% Jxin + pil Ei= ) manxin |+ )_ain(xin—%i) = ) Bin¥in
n T

h<T,
hG.Ai

with box-constraint multipliers a;p, f;;, = 0. Since prices are exogenous to the household, ahIE[Si] =E[p RTP] and

%Var(s ) = 2(pRTP Si ) because Var(S lE[ (S; — -])2] = JVar(S;)/dx;y = 2]E{ (S; —E[Si])( pRTP E[p RTI)] ] Sta-
tionarity w.r.t. x;j, gives

Elp; "] + 27:( e ZPRTPW) + pilh) = pinin + @ip = Bin = 0.
At interior hours (0 < x;;, < %;), aj;, = ip = 0, yielding
E[pTP] + 2%’(175“), ZP?TPW) + Pi(h) = pinin,
4
which is (19). Complementary slackness for a;j, f;;, covers corner hours.
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implies all lower-cost hours {0 : k;, < K;p} are saturated or infeasible. Aggregating over i,
IO (weakly) lowers peak load and (weakly) raises off-peak load while daily kWh per EV is

unchanged.

Proof. Let Qp, = by, +} ; x;j;. The Lagrangian is

L({xinh Apib ) Z[Ch Qn) = 4(Qn) ] Zle )Xin

+ Zﬂl Z HinXip |+ Z‘Mlh Xih — xl Z,”lhxlh 21
i

h<T;
heA

Stationarity w.r.t. x;, gives

oL
Ixjp,

= ¢,(Qn) = 1,(Qp) +1i(h) — pitgin + piy, — pyp, = 0.
S

Ch

Cntipi(h)
Min
xip = X; then p, > 0 and «;; < p;. Hence x;j, is nonincreasing in «;j: the IO scheduler fills

If 0 < x;, < X; then 3 = 0 and p; = = Kip. If x5 = 0 then pj, > 0 and x;;, > p;; if
the lowest adjusted-cost hours first, up to feasibility. If x;, > 0 while some feasible o0 has
Kio < kip and x;, < X;, then x;, < p; < x;,, a contradiction. Summing over i yields load

shifted from high-¢;, to low-¢, hours, conserving daily energy by Eq. (16).

Lemma G.0.2 (Elasticity ordering). In high plug-in hours,
el = eyl = ley®™

Proof. Step 1 (IO upper-bound response). Consider a small perturbation dé concentrated
in hour h. Differentiating the KKT system in Lemma G.0.1 yields a linear system in
{dxip, dp;, dp;} whose solution preserves the merit order: dx;; <0 at the perturbed hour
and dx;, > 0 at some lower-«;, hours, with } ;.7 sc 4. 11i¢dx;¢ = 0 (intra-day reallocation).
Aggregating over i,

10 10

<0,
R 9,

' is maximal subject to Eq. (16).

Thus |e | is an upper bound among feasible reallocations.
117



Step 2 (RTP attenuation by risk/attention). From the household FOC Eq. (19), totally

differentiate across hours. Stacking in vector form,
Hi dx,- = —(I + 2')/1 )Zp Sl)dp,

where H; is the Hicksian substitution matrix (negative semidefinite), ¥, is the covariance
matrix of prices, and S; maps p to }_,pex;e. The matrix (I +2y;%,S;) is positive semidefi-
nite for y; > 0; multiplying a negative semidefinite H; by such a factor weakly shrinks the
response (Loewner order). Furthermore, a; > 0 creates inactive hours (corners), reducing

the response support. Aggregating over i preserves attenuation:

RTP 10
151 < 1551

Step 3 (ToU as projection). Let P be the block-averaging operator mapping hourly prices
to ToU blocks (P? = P, ||P||, < 1). For small perturbations, dQ* ~ H* drc* with H* negative
semidefinite. Under ToU, dr™V = Pd=R™P hence

ToU ToU p 7. RTP RTP ; RTP
1dQ "1l = [[H " Pdr™ "l < [H™ " dm™ |y,

SO |8Qg°U/8ph| < |9Q5Tp/aph|. Combining Steps 1-3 yields the stated ordering.”>

Lemma G.0.3 (Welfare ranking with frictions). With a;,y; > 0,
WIO > WRTP > WTOU > WFlat.

Proof. Let WK be per-EV social welfare (net of pure transfers). IO maximizes W for the

73We do not analyze a bill-variance ordering in our empirical set-up, but with Billk = Y kak the law of total

variance gives
k k kxk
Y st st |

Moving from RTP to ToU replaces p by Pp, where P is a contraction (||P||; < 1) and a Blackwell coarsening. Both the
within-state term and the between-state term weakly fall. Under IO (EV sub-load), consumers face a flat off-peak retail
rate; wholesale volatility is internalized by the aggregator, yielding

Var( Blllk [E|Var + Var| E

Var(BillRTP) > var(Bill™Y) > Var(Bill'©).
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EV sub-load given {¢;,} (Lemma G.0.1 and KKT optimality). Relative to IO,

WRTP = WiO _ AW, o1q — E[a;] - E[y; Var(Bill*TT)].
~———— ~——
>0 >0 >0

ToU coarsens the signal (projection loss AWg,, > 0) and Flat removes intertemporal in-

centives entirely. Hence the stated ordering.

Proposition G.0.1 (Emissions ordering). If e, is (weakly) lower off-peak, then relative to

baseline: 10 achieves the largest emissions reduction, followed by RTP, then ToU, then Flat.

Proof. By Lemma G.0.1, 10 shifts the most load into low-¢;, hours, which coincide with
low-¢;, by assumption; RTP and ToU shift less; Flat does not reallocate. Summing ejx;;,

across hours yields the ordering.

G.0.4 Opverrides (“Bump Charging”): Behavior and Welfare

Override decision and probability. A household overrides in hour h iff
Vip > M+ i, (22)

where v;j, is the immediate utility from charging now and m;; the marginal benefit from

deferring to the IO-planned hour. If F;; is the CDF of v;;,, the override probability is

Bin = Pr[viy > miy+ ;| = 1= Fip(miy + ;). (23)

Lemma G.0.4 (Override monotonicity). If F;j, is nondecreasing, then p;j, is weakly decreasing

in ¢; and in myy,.

Proof. Differentiate Eq. (23) (where densities exist): dB;n/dp; = —fin(m;, + ¢;) < 0 and

similarly for m;;,. Without densities, monotonicity follows from the CDF order.

Lemma G.0.5 (Welfare effect of an override). Let h’ be the IO-planned hour and h the over-
ride hour for EV energy q;, > 0. Private net benefit is v;, —m;, — ¢; > 0 when overriding. Social

cost changes by (&, — €j) qip; if €, > Cpy the override raises system cost.

Proof. Private part is by Eq. (22). Social part: the IO plan equalizes marginal costs across

used hours; deviating to higher-¢, increases procurement net of r;, by (¢, — ¢,) gin-
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Proposition G.0.2 (Aggregate override rate). If v, arei.i.d. with CDF F, and m;;, € {mehg, mdef)

depending on whether 10 planned charging in h, and if p is the share of hours planned to charge,
then

B = (1-p)[1=Fy(m® + )] + p[L - Fy(m™E+ )]

where (ﬁ is the (mean) hassle cost.

Proof. Law of total probability conditioning on planned status; apply Eq. (23) in each

state and average.

Welfare with overrides and crossover. Let WI© and WRTP be per-EV welfare absent

overrides and define the baseline gap

AW, = WO - wRIP, (24)
If overrides occur at rate /3 with per-override loss A, IO welfare becomes

WIO+O — wIO_ g, (25)

We calibrate A by

/\UB

A~ ppeak-Aéeff-qo, = (maxc”h—mhinc},)-qr?lax, (26)

h

where ppeqi is the probability an override lands in peak, Acc the peak-off-peak spread
(£/kWh), and q© kWh shifted per override.

Lemma G.0.6 (IO-RTP crossover threshold). If AWy > 0 and A > 0, the override rate at
which 10 with overrides equals RTP is

=St (27)

Proof. Equate Eq. (25) to WRTP = WO — AW, and solve for f.

Proposition G.0.3 (Welfare ordering with overrides). If § < p*, then W1O+O > WRIP, jf
B > B*, RTP can dominate.

Proof. From Eq. (25) and Lemma G.0.6, the sign of W!O*O — WRTP = AW, — g1 is deter-

mined by f relative to f*.
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G.1 Cross-country calibration and crossover analysis

The experiment (IO vs. alternatives) identifies (i) peak-to-off-peak reallocation mag-
nitudes (Lemma G.0.1); (ii) override frequencies 3 and their timing relative to peak/off-
peak (for A via Eq. (26)); and (iii) the baseline welfare gap AW, via cost/benefit ac-
counting under no overrides. These map directly into the decision rule induced by
Lemma G.0.6.

G.1.1 Objective and overview

This section develops a cross-country calibration of the override—welfare relationship
in IO systems. The goal is to identify, for each major IO market, the crossover override
rate — that is, the frequency of user overrides that would eliminate IO’s welfare advantage

over real-time pricing (RTP).

The analysis combines three empirical components: (1) the observed probability of
an override per charge day, from a random sample of users across the United King-
dom, Germany, Spain, and the United States; (2) the conditional peak-landing probability
Ppeak = Pr(peak bump/day)/Pr(bump/day); and (3) country-level parameters describing
tariff spreads and average energy per override g° (kWh per bump event), drawn from

IO Go pricing data.

G.1.2 Estimating AW, for the United Kingdom

This appendix documents how we estimate the baseline welfare gap AWSUK) — the

per-EV daily welfare advantage of 10 relative to RTP in the absence of overrides. The
welfare gap is defined as the expected daily difference in total surplus between IO and

RTP regimes:
AW, = [UIO _ CIO] _ [URTP _ CRTP],

where UF is the household mobility utility net of timing disutility and C* the expected
system procurement cost. Under RTP, households face optimization and attention fric-
tions that reduce responsiveness; under 10, scheduling is automated, internalizing sys-

tem prices without these frictions.

For the UK, we set the representative elasticity of RTP demand at ¢ = —0.2 and assume
a daily attention cost of a = 0.20 per day. Using observed load and tariff data (off-peak
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£0.07/kWh, peak £0.27/kWh; spread Aces = 0.20/kWh), we simulate hourly charging
schedules under both IO and RTP. Automated IO coordination reallocates approximately
0.375 kWh of energy per day from peak to off-peak hours, yielding procurement-cost sav-
ings of about 0.20/kWh x 0.375 = 0.075 per day. In addition, IO reduces timing disutility
and bill-variance penalties by a further £0.020, as households experience fewer incon-
venient charging hours and lower price volatility exposure. Together these components
yield: AW ") = 0.075 +0.020 = 0.095 per day.”4

G.1.3 Empirical calibration of override behavior

Table A15 reports observed override behavior across countries. The United Kingdom
exhibits a low overall bump frequency (1.7% per charge day) and correspondingly low
peak-landing probability (0.3%), yielding ppeax = 0.176. Early adopters show slightly
higher values (ppeak = 0.23). In Germany and Spain, users override much more frequently
(10% per day), while in the United States roughly one-third of overrides fall in peak
windows. Average energy per override q© ranges from 1.25 kWh in Spain to around
2.4 kWh in the UK and US (see Table 17 below). Tariff spreads Ac.g vary widely, from
£0.17/kWh in the UK to only £0.037/kWh in the US. These differences strongly affect the

expected welfare loss per event.

Table 17: Tariff and override characteristics by country

Country  Off-peak rate Standard rate ¢® (kWh) Aé. (£/kWh) % bumped in peak

UK £0.24 £0.07 2.41 0.17 0.3
Germany €0.27 €0.39 2.06 0.12 1.9
Spain €0.07 €0.128 1.25 0.058 0.7
Us $0.11 $0.147 2.45 0.037 1.1

G.1.4 Per-override welfare loss

Using the expression A = ppeakAEeffqo, we obtain the average loss per override (in £).
Table 18 presents results under ¢ = —-0.2 and AW, = 0.095. Price spreads are expressed in

pounds for comparability.

74 .. . . . . Ac) .
For the remaining countries, we scale AW, proportionally to the observed effective price spread A, following

AWéC) = AWéUK) X (AEE}Z/AEEEK)). This assumes similar elasticities and flexible load shares across markets, attribut-

ing cross-country differences in welfare to the strength of the intertemporal tariff gradient. Empirically, this yields
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Table 18: Cross-country crossover analysis (RTP ¢ = —0.2)

AV o 3 . Full-load Partial
Country Ppeak (£/kWh) g~ (kWh) A (£/override) B+ (a = 0.25) Observed rate
UK 0.1 0.17 2.41 0.072 1.32 0.33 0.0186
Germany 0.205 0.12 2.06 0.051 1.87 0.47 0.107
Spain 0.083 0.058 1.25 0.006 15.83 3.96 0.105
uUsS 0.367 0.037 2.45 0.033 2.88 0.72 0.035

Notes: The expected welfare loss per override is A = Ppeak A q©, where Ppeak is the probability an override lands in
peak, A¢,s ¢ the peak-off-peak spread (£/kWh), and q© kWh shifted per override. Crossover rates §* (events/EV-day) are

computed as AWo/i, with AW = 0.095 and a = 0.25 for partial-load automation. Observed rates reflect empirical daily
override frequencies. The US is from Texas.

We can see that for the four countries, the observed override rate is well below the
crossover override rate. In the UK, there is a low override frequency (1.9% per day) and
a moderate price spread yield A ~ 0.072. IO remains welfare-superior up to *(0.25) =
0.33 per day, an order of magnitude above observed behavior. For Germany, more fre-
quent overrides and a nontrivial tariff gradient narrow IO’s margin, but the observed rate
(0.107) remains below $*(0.25) = 0.47. Germany is the tightest case, where welfare par-
ity could emerge if overrides doubled. For Spain, flat tariffs imply tiny welfare penalties
(A~ 0.006). Even frequent overrides barely affect welfare: the crossover is 15.8/day (full-
load) and 3.96/day (a=0.25), far above observed 0.105. In the US (Texas), high ppeax but
very small Aé.¢ yield A = 0.033 and a partial crossover of 0.72/day. Observed 0.035/day
lies safely below this threshold, though steeper future tariffs could tighten the margin.
To note, the f* are expressed as override events per EV-day rather than probabilities.
A value above 1 therefore indicates the rate at which Intelligent Octopus would lose its
welfare advantage if users could, on average, override more than once per day. In prac-
tice, each vehicle can generate at most one override per plug-in episode, so observed rates
(0.02-0.11 per day) are far below this threshold. Thus, f* > 1 should be interpreted as
meaning that the tariff remains welfare-superior even if every vehicle overrode on every

charging day.

Across all countries, observed rates (0.019-0.11 per day) are an order of magnitude
below the corresponding a=0.25 crossovers, confirming that IO remains welfare-superior

even with only 25% of load automated.”>

AWSPY % 0.067, AW ~ 0.032, and AW™ % 0.021.

7>Higher elasticity (e.g. ¢ = —0.5) reduces AW, and proportionally lowers §*, narrowing 10’s advantage by roughly
20%. Yet even under € = —0.5, IO dominates in all countries except possibly Germany.
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Limitations. Our theoretical framework abstracts from several important considera-
tions. First, the welfare thresholds depend on calibrated parameters for attention costs
(a;), hassle costs (¢;), and risk-aversion penalties (y;) that are not directly observed in
our experiment; while we draw on the literature and perform sensitivity analysis, these

inputs remain assumption-driven.

Second, we model overrides as independent events with constant per-override wel-
fare loss A, whereas in reality override behavior and costs may vary systematically across

hours, days, and households.

Third, we treat plug-in behavior as exogenous to the tariff, assuming it remains fixed
across pricing regimes. In practice, customers may adapt when and how they charge
in response to tariff signals. For instance, RTP could encourage shifting plug-in times
toward periods of lower prices and across days, whereas IO Go’s ToU pricing is fixed, and
cannot flexibly incentivize plug-in. We lack data on plug-in behavior for customers who
are not on 10 Go, but future work could incorporate these behavioral responses to better

capture the interaction between tariff design and charging behavior.

Finally, our analysis is partial-equilibrium: prices {¢},} are taken as given and house-
holds are price-takers, omitting possible feedback effects if IO Go or RTP adoption is
widespread. These simplifications are deliberate, allowing a tractable link between model
predictions and experimental data, but they should be borne in mind when interpreting

the welfare rankings.
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