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Abstract

We study the welfare impacts of 96 climate-related tax and spending policies. We extend
and apply the marginal value of public funds (MVPF) framework, most notably providing a new
method for incorporating learning-by-doing spillovers. We find subsidies for the production of
clean energy (such as wind production tax credits) have higher MVPFs than all other subsidies
in our sample, including EV subsidies. Conservation nudges have large MVPFs when targeting
regions with dirty grids. Fuel taxes and cap-and-trade policies are highly efficient means of raising
revenue. We also construct traditional cost-per-ton estimates and compare and contrast the lessons
they provide.
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1 Introduction

What are the best ways to address climate change? There is a robust and growing literature

that helps shed light on this issue by examining the causal effects of climate-related policy

changes. These papers often assess the effectiveness of policies by measuring the cost per ton of

carbon dioxide (CO2) abated. Yet, comparisons of these costs per ton across studies face several

challenges. First, the input assumptions in these calculations vary across papers. Second, there

are at least three distinct (and often conflated) definitions of the cost per ton of CO2 found in

the literature: (1) resource costs expended per ton of CO2 abated (Grubb et al. 1993, Enkvist

et al. 2007, Mullainathan & Allcott 2010, Greenstone et al. 2022), (2) government costs per ton

of CO2 abated (Gillingham & Tsvetanov 2019, Knittel 2009), and (3) social costs per ton of

CO2 abated (Hughes & Podolefsky 2015, Fournel 2024). Third, each of these metrics focuses

on the cost of achieving a given CO2 reduction as opposed to maximizing social welfare.

It is with these considerations in mind that we extend and apply the marginal value of public

funds (MVPF) framework to examine the welfare consequences of historical US spending and

revenue-raising policies addressing climate change. The MVPF is a form of benefit-cost ratio

in which all benefits to individuals are incorporated in the numerator (measured by the sum of

their willingness to pay) and net government costs are incorporated in the denominator. All

else equal, policies with higher MVPFs are generally “better” spending policies because they

deliver greater welfare gains per dollar spent. Conversely, those with lower MVPFs are “better”

methods of raising revenue (or reducing spending) because they impose a lower welfare cost per

dollar of revenue raised.1

We conduct our analysis for a comprehensive set of climate-related tax and spending policy

interventions in the US that affect greenhouse gas emissions. We focus on academic research that

uses experimental or quasi-experimental methods to rigorously evaluate policy interventions

in the past 25 years. This yields a sample of 96 policy changes in three primary categories—

subsidies, nudges and marketing, and revenue raisers—along with a selected set of international

aid policies. In addition to constructing an MVPF for each of these 96 policies, we also construct

each of the three common cost-per-ton measures. This allows us to compare the way each metric

ranks the policies in our sample.

Across our MVPF estimates, we use a consistent method to translate a policy’s causal effect

on behavior into a valuation of that change in behavior. We proceed in two steps. First, we

use a harmonized method to translate changes in behavior (e.g., changes in car purchases or

electricity usage) into changes in emissions and other damaging outcomes (e.g., car accidents).

For example, in the case of changes in electricity production or electricity use, we use estimates

1The MVPF statistic does not depend on preferences for equity, but one can readily incorporate equity
concerns when using the MVPF to make policy decisions: Given two policies, policy 1 and policy 2, a decision-
maker prefers a budget neutral policy that spends more on policy 1 financed by raising revenue from policy 2
if and only if that decision-maker prefers giving $MV PF1 to policy 1 beneficiaries rather than $MV PF2 to
policy 2 beneficiaries.
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from the AVERT model from the US Environmental Protection Agency (EPA) to measure

associated changes in emissions resulting from compositional changes in the grid (EPA 2024).

For changes to vehicle purchases (e.g., electric vehicles (EVs) versus internal combustion),

we estimate the change in gallons of gasoline used relative to a counterfactual vehicle. We

measure the total CO2 emissions associated with the upstream production of gasoline and its

combustion. We combine that with measures of local pollutants released such as particulate

matter.

Second, we apply a consistent dollar value for each externality. For the social cost of carbon

(SCC), we draw from recent work by the US EPA (EPA 2023) that places the SCC at $193
in 2020 (and rising in the years to follow). We also explore the robustness of our results to

alternate measures of the SCC, ranging from $76 to $1367 in 2020. For local pollutants, we

use estimates of the social cost of NH3, HC, NOX , PM2.5 and SO2 from the AP3 integrated

assessment model (Tschofen et al. 2019), which monetizes health impacts from air pollution

exposure using estimates on mortality and an associated value of a statistical life (VSL).

Our primary methodological contribution is the introduction of a new sufficient statistics

approach to quantify the benefits of “learning-by-doing” effects. There is a large literature

showing that the prices of new technologies such as solar cells, wind turbines, and batteries

have declined with cumulative global production (Way et al. 2022). These patterns often

serve as a proposed justification for subsidizing particular low-carbon technologies: Subsidizing

specific technologies with relatively high abatement costs today may generate learning-by-doing

spillovers that lower the future cost of these technologies and generate future environmental

benefits (Romer 1986, van Benthem et al. 2008, Bollinger & Gillingham 2019, Bistline et al.

2023). Our approach builds most closely on the work of van Benthem et al. (2008), who

develop a dynamic model of learning by doing and use it to simulate the desirability of solar

subsidies in California. Our methodological contribution is to show that when the marginal

cost of production is an isoelastic function of cumulative production and when demand is

an isoelastic function of price, the time path of production follows a second-order ordinary

differential equation that can be solved to estimate the benefits from learning-by-doing.

Learning by doing generates two types of benefits: first, reductions in the future cost of

low-carbon technologies increase consumer welfare due to lower future prices, and second, these

price reductions serve to increase future take-up and, consequently, reduce future emissions.

We apply our framework to study the potential implications of learning by doing for policies

that increase the current production of solar cells, wind turbines, and batteries. While we focus

here on learning-by-doing in the context of climate change, our framework can be used in other

industrial policy settings where there may be learning-by-doing externalities.

Results We have three primary empirical findings from our MVPF analysis. First, we find

that subsidies for investments that directly displace the dirty production of electricity have

higher MVPFs than all other subsidies in our sample. Policies providing production tax credits
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(PTCs) for wind power and subsidies for residential solar have MVPFs that generally exceed 2.

In contrast, subsidies to consumers that provide appliance rebates, home weatherization, vehicle

retirement, or subsidies for hybrid vehicle purchases have MVPFs around 1, indicating they

provide roughly $1 of benefits for every $1 of government spending. Electric vehicle subsidies

have MVPFs around 1.4.

We examine the robustness of our conclusions to a wide range of input assumptions. We find

that the relative ordering of policies remains consistent but that two key assumptions impact

the levels of our MVPF estimates: i) the social cost of carbon and ii) the inclusion of learning

by doing externalities. For example, the inclusion of learning-by-doing effects amplifies the

MVPFs of wind, solar, and EV subsidies. In the case of wind PTCs, the MVPF rises from 3.85

to 5.87 with learning by doing. In the case of residential solar, the MVPF rises from a relatively

low value of 1.45 to 3.86. Without learning-by-doing effects, the MVPF of EVs falls to around

1, in line with other consumer subsidies. Higher values of the SCC lead to larger MVPFs

for all subsidies in our sample. Despite this heterogeneity, our main result that production tax

credits have higher MVPFs than other consumer subsidies continues to hold across a wide range

of SCC estimates and learning-by-doing assumptions, along with other assumptions discussed

more below.

Second, we find that nudges to reduce electricity consumption can deliver large welfare gains

(MVPFs exceeding 5) in regions with relatively dirty electric grids. In areas with cleaner grids

like California and the Northeast, the MVPFs fall below 1.2 This finding also suggests that

the effectiveness of these nudges will decrease over time as more electricity comes from low- or

zero-carbon sources.

Third, we find that taxes on polluting goods can serve as an efficient means of raising

revenue, as they have low MVPFs. We analyze taxes on gasoline, diesel, and jet fuel, along

with changes to the number of auctioned permits in cap-and-trade systems. We find that nearly

all of these revenue-raising policies have MVPFs below 1, with most having MVPFs below 0.7.

This means that taxes on polluting goods impose a welfare cost of only $0.70 on society for

every $1 of revenue raised.3 This finding reflects the logic of Pigouvian taxation, quantifying

the efficiency of raising rates when current tax rates fall below the associated environmental

externalities.

While our primary focus is on US environmental policy, we also consider the welfare conse-

2This echoes the conclusions in Borenstein & Bushnell (2022), who suggest the returns to reducing energy
consumption are lowest in areas with clean grids. We find support for this conclusion in the context of energy
conservation nudges, despite the fact that previous work has found treatment effects of nudges are larger in
more environmentalist areas (Allcott 2015).

3We find even lower MVPFs that fall below zero when studying cap-and-trade policies that directly target
carbon emissions. Results from the introduction of several cap-and-trade programs suggest reducing the number
of auctioned permits (equivalent to raising a carbon tax) can raise revenue while providing positive net benefits
for individuals in the economy (environmental gains outweigh the permit costs faced by emitters). We caution,
however, that these policies may have benefited from the ability of low-hanging fruit, like removing coal power
plants. We discuss these generalizability concerns in Section 6.

3



quences of US spending abroad on policies that address climate change. We find such subsidies

have the potential to produce high MVPFs, even when only considering the impact on US ben-

eficiaries and US taxpayers. For example, we consider the case of subsidies for the take-up of

efficient charcoal cookstoves in Kenya (Berkouwer & Dean 2022). Ignoring any benefits of these

stoves to local residents and ignoring any non-US benefits of CO2 reductions, the US-specific

gains from reduced CO2 emissions are 37 times larger than the net cost of the subsidy, gener-

ating a higher MVPF than any domestic subsidy in our sample. (When considering the full set

of global benefits, the MVPF rises from 37 to 323). That said, there is substantial uncertainty

associated with these international subsidy estimates. The estimated impacts of these policies

often vary quite extensively, even within categories of similar policies. As we discuss in Section

7, the magnitude of the US-specific MVPF depends heavily on the incidence of the social cost

of carbon. In particular, it depends on the extent to which CO2 damages have incidence on US

residents and US government tax revenue.4

Having outlined our primary MVPF findings, we then estimate the cost per ton of CO2

abated for each policy in our sample. As highlighted above, the notion of “cost” in cost-per-ton

varies widely in the existing literature, with at least three conceptually distinct definitions being

used. We refer to these as the i) resource cost per ton, ii) the government cost per ton, and the

iii) social cost per ton.5 The resource cost per ton measures the economic resources needed to

abate each ton of CO2 (Enkvist et al. 2007).6 The government cost per ton measures the net

government outlay per ton of CO2 abated (Gillingham & Tsvetanov 2019, Knittel 2009). The

social cost per ton seeks to incorporate a broader range of costs, capturing the total government

cost net of any CO2 benefits (transfers, local pollutants, etc).

The differences in these definitions of cost can yield substantively different rankings both

within and across policies. For example, in the case of subsidies for energy-efficient appliances,

the cost per ton values range from -$2 to $474 across the three definitions. From a resource

cost perspective, the energy savings from more efficient appliances offset any higher upfront

cost. This delivers a negative resource cost per ton of -$2. However, providing government

subsidies for these appliances generates large transfers to those who would have purchased

these appliances anyway. The cost of those transfers are omitted from the resource cost per

ton, but are included in the government cost per ton, yielding a value of $474 per ton.7

4Many models that agree on the level of the social cost of carbon still differ in the geographic incidence
of those damages and the split between market and non-market damages (e.g., productivity declines versus
mortality impacts). The impact on US tax revenue is determined by the fraction of damages that reflects
US-specific productivity changes, as the US Treasury has an equity stake in those changes.

5The distinction between resource, government, and social cost is not always made clear in the papers in
previous literature. For example, Table 2 of Gillingham & Stock (2018) compiles a set of cost-per-ton estimates
from the existing literature. The best policy listed is a behavioral nudge for reducing energy where the net
resource cost of the policy is reported. By contrast, residential solar panels appear to be one of the highest cost
policies in their sample, but the reported cost per ton measures the government cost of the policy.

6See Grubb et al. (1993) for an early summary of the resource cost-per-ton approach. See International
Energy Agency (IEA 2020) and the Environmental Defense Fund (Environmental Defense Fund 2021) for more
recent implementations.

7The social cost per ton lies in between as it nets out these inframarginal transfers as both a cost and benefit
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Each of these cost-per-ton metrics can be motivated by a decision-maker seeking to mini-

mize a particular notion of cost subject to a fixed reduction in CO2. This contrasts with the

conceptual experiment behind the MVPF, which envisions maximizing social welfare subject

to a government budget constraint. We therefore examine the lessons offered by each of these

cost-per-ton analyses and study how they differ from the conclusions of our MVPF analysis.

In the case of resource cost per ton, we find large variation across categories even among

those with similar MVPFs. For example, appliance rebates and vehicle retirement subsidies

have resource costs per ton of -$2 and $1008 (their MVPFs are 1.164 and 1.047). The resource

costs diverge because switching to high-efficiency appliances saves resources via energy savings,

while building a new car requires significant resources.8 But in both cases, the subsidies to

encourage these behavioral changes are primarily transfers to people buying those products

anyway. The MVPF captures the costs and benefits of the inframarginal transfers induced by

these subsidies, driving those values toward one. The resource cost per ton omits these costs

and benefits, as it is better suited to evaluate abatement decisions of private actors (e.g. firms).

In the case of the government cost per ton, the relative ordering of policies is broadly

consistent with the ordering generated by the MVPF. However, EV subsidies have some of the

highest government cost per ton in our sample ($1,356), while their MVPF lies above most

other consumer subsidies. This is because the government cost per ton omits all non-CO2

benefits. It is designed for a decision-maker focused exclusively on reducing emissions at lowest

government cost, without regard for other welfare impacts. In the case of EV subsidies, we find

that most of the benefits are non-environmental. These include both the transfer benefits to

inframarginal recipients and the learning-by-doing effects that lower the cost of future vehicle

purchases. They result in an MVPF value modestly above 1, despite the fact that the cost per

ton exceeds the social cost of carbon used to construct the MVPF.

Finally, we consider the case of the social cost-per-ton (SCPT). Consistent with the lessons

from the MVPF, the SCPT of wind PTCs, residential solar, and EVs are better than all other

subsidy policies. However, the MVPF and SCPT deliver opposite orderings within these three

policies (e.g., EVs have a SCPT of -$415 in contrast to -$32 for wind PTCs.) This reordering

occurs because of a feature of the SCPT when values are negative, as such policies abate CO2

while also providing positive non-CO2 benefits. In such cases, the SCPT no longer retains

its Lagrange multiplier interpretation, which prevents informative comparisons across policies.

Increased non-CO2 benefits make the cost per ton more negative while increased abatement

makes it less negative.9

and adds non-CO2 benefits like reductions in local pollutants.
8The resource cost of vehicle retirement policies does not include the utility value provided by the new cars.

Analogously, gas taxes have negative resource costs because they discourage the use of resources. However, the
welfare cost imposed on the taxed individuals is omitted from resource cost.

9The SCPT also generally omits the opportunity cost of raising funds. In Section 8 we discuss how this yields
SCPT estimates that are independent of the behavioral response to a policy. We also discuss an alternative
SCPT approach, implemented by Fournel (2024), which incorporates the shadow price of the government budget
constraint using a “marginal cost of funds” adjustment. We discuss the pros and cons of this approach and
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Our paper relates to a large literature in climate and environmental economics. It draws on

a large set of causal effects of policy changes discussed throughout the text below and builds

on a body of work conducting comparative analyses of climate policies (Gillingham & Stock

2018). In addition to the cost-per-ton analyses discussed above, our paper also relates to a

large literature on benefit-cost analysis and its applications. The MVPF approach extends the

traditional approach to benefit-cost analysis, which tends to compare the benefits of a spending

policy to the distortionary cost of raising revenue through a change in a linear income tax rate

(Stiglitz & Dasgupta 1971, Atkinson & Stern 1974). The MVPF approach allows researchers

to choose from a menu of policies to close the budget constraint, instead of a linear income tax.

For example, if one treats individuals paying the gas tax and wind PTC beneficiaries as having

similar social welfare weights, the comparison of an MVPF of 5.87 for wind PTCs to an MVPF

of 0.67 for gas taxes suggests that every $1 of government revenue raised from a gas tax and

spent on wind PTCs generates $5.20 (=5.87-0.67) in net benefits to individuals in society.

The rest of this paper proceeds as follows. Section 2 discusses the MVPF framework and

outlines how it can be used to examine the welfare effects of policies impacting climate change.

We also discuss the definitions of cost per ton used in previous literature and how they com-

pare to the MVPF. Section 3 discusses our sample of policies and methods for harmonizing

the measurement of externalities and the valuation of those externalities. Sections 4, 5, and 6

discuss our results for subsidy policies, nudge and marketing policies, and revenue-raising poli-

cies, respectively. Section 7 discusses our findings for a limited set of international subsidies.

Section 8 constructs the cost per ton measures for each policy in our sample and compares

the conclusions with those provided by the MVPF approach. Section 9 concludes. The Online

Appendix provides a detailed description of the MVPF and cost per ton construction for each

policy in our sample.

2 Measuring the Welfare Impact of Policies Affecting

Climate Change

The goal of our analysis is to translate estimates of the causal effects of policies into insights

about their impacts on social welfare. We begin by extending the MVPF framework to con-

sider environmental externalities. We then discuss several cost-per-ton definitions employed in

previous literature. Finally, we present our key theoretical contribution, which is a sufficient

statistics method for valuing learning-by-doing externalities that can be incorporated into both

the MVPF and cost-per-ton frameworks.

illustrate how the magnitude of these estimates vary with the MVPFs of the accompanying revenue-raising
policy.
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2.1 MVPF Approach

For any policy change, the MVPF approach measures the benefits it provides to individuals in

the economy relative to its net cost to the government:

MV PF =
Benefits to Individuals

Net Cost to Govt
. (1)

One dollar of additional net spending yields $MV PF in benefits to individuals; conversely one

less dollar of spending or revenue raised yields a cost of $MV PF to individuals. Benefits are

measured using an individuals’ private willingness to pay (WTP) and include both direct and

indirect beneficiaries (e.g., future generations benefiting from lower CO2). To translate private

benefits into social welfare, we multiply the MVPF by the average social welfare weights of the

beneficiaries, η, where giving $1 to beneficiaries leads to an increase of $η in social welfare. In

total, one dollar of spending on the policy delivers ηMV PF in social welfare benefits.

We use the MVPF by comparing across policies to form hypothetical budget-neutral policies.

For any two policies, a budget neutral policy that increases spending on policy 1 financed by

raising revenue from 2 increases social welfare if and only if

η1MV PF1 > η2MV PF2 (2)

where MV PFj is the marginal value of public funds of policy j = 1, 2.

For example, if policy 1 has an MVPF of 1 and policy 2 has an MVPF of 2, then raising

revenue from reductions in spending on policy 1 to finance increased spending on policy 2 will

increase social welfare if and only if the government prefers $2 going to policy 1 beneficiaries

to $1 going to policy 2 beneficiaries (i.e., η1 > 2η2). Reasonable people may disagree about the

relative value of giving benefits to policy 1 versus policy 2 beneficiaries, but these disagreements

do not affect the MVPFs. Rather, the MVPF characterizes the trade-offs faced by a decision-

maker. Holding welfare weights fixed, policies with lower MVPFs are better ways of raising

revenue while policies with higher MVPFs are better ways of spending government resources.

In addition, when welfare weights are the same for policy 1 and policy 2 beneficiaries, the

difference between MV PF1 and MV PF2 reveals the welfare gain to individuals in the economy

per dollar spent on policy 1 using net revenue raised from policy 2.

2.2 Model

In this section, we develop a simple model to examine the welfare impact of environmental

policy changes. We use the model to achieve two goals: (1) Illustrate the key ideas behind the

MVPF and how it relates to cost-per-ton metrics, and (2) show how to incorporate learning-

by-doing effects into our analysis. Appendix A extends this model to include various features
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that are important for our empirical implementation, such as multiple goods and imperfect

competition.

Consider a good x that generates an environmental externality of V per unit of x consumed.

For example, x may be an electric vehicle or a gallon of gasoline. Let p denote the price of x

paid by consumers and let τ denote the current subsidy (or −τ is the tax) on good x such that

producers receive q = p + τ . The willingness to pay for a small increase in the subsidy, dτ , is

given by

WTP = xdτ + V dx (3)

The first term is the monetary value of the subsidy (holding behavior fixed due to the envelope

theorem), and the second term is the WTP from the change in the environmental externality.

These two terms are sufficient for measuring WTP if we assume perfect competition and full

pass-through (assumptions that we relax in our empirical implementation).

The term dx is the causal effect of the policy change. A subtle but important point is that

this needs to include any “rebound” or general equilibrium effects of a policy that might be

missed in a reduced-form analysis. For example, a subsidy for wind turbines may lead to a

lower price of electricity. This lower price can cause an increase in energy consumption in the

economy, which diminishes the environmental benefits of the subsidy. These types of rebound

effects should be included to accurately value the externality generated by the subsidy. In

Appendix D, we show how we incorporate these rebound effects using estimates of the market

supply and demand curves and discuss how we apply this to account for the rebound created

by upward-sloping local supply curves in the US electricity markets.

The net cost to the government of the subsidy has two terms:

Cost = xdτ + τdx (4)

where the first term holds x fixed and the second term captures the fiscal impact of the change

in x. This cost, τdx, is paid by the government but is not valued by individuals due to the

envelope theorem.

The ratio of WTP to government costs yields the MVPF for a change in τ :

MV PF =
xdτ + V dx

xdτ + τdx
(5)

=
1 + V

p
(−ϵ)

1 + τ
p
(−ϵ)

(6)

where ϵ = dx
dp

p
x
is the price elasticity of demand so that −ϵ is the percentage change in con-

sumption of x in response to a 1% increase in the consumer price. The WTP for a dollar’s

worth of mechanical subsidy exceeds its mechanical cost by the change in consumption times

the value of the environmental externality relative to the price of the good, V
p
. Conversely, the
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net cost to the government is the sum of the mechanical cost and the fiscal externality, which

is given by the change in consumption times the tax rate relative to the price of the good τ
p
.

The formula shows that policies with high MVPFs tend to have higher magnitudes of the price

elasticity, −ϵ, higher environmental benefits per dollar of spending on the good, V/p, and lower

preexisting subsidies, τ/p.10

A natural benchmark is the case where τ = V . In this case, the government fully internalizes

the externality with a Pigouvian tax (or subsidy), generating an MVPF of 1. More generally,

the MVPF measures the extent to which status quo policy deviates from the Pigouvian policy

and quantifies the willingness to pay per dollar of spending when moving toward that optimum.

2.3 Cost Per Ton Approaches

The MVPF approach provides guidance to a decision-maker seeking to maximize social welfare

when facing a government budget constraint. An alternative approach is to consider a decision-

maker facing the constraint of needing to abate a ton of CO2 and seeking the lowest cost

method of doing so. The key question with this method is what definition of “cost” to use.

As noted in the introduction, several definitions have been employed, and at times conflated,

in previous literature. In this section, we define three notions of “cost” that span the most

common estimands in the literature: resource cost, government cost, and social cost per ton.

We discuss each measure’s relationship to the MVPF approach and construct these measures

alongside the MVPF for each policy in our empirical analysis below.

Resource Cost per Ton The “resource cost per ton” has a long history (see Grubb et al.

(1993)) and was popularized in the McKinsey cost curve (Enkvist et al. 2007). It measures the

resources consumed to produce and use the product, divided by the tons of carbon it abates.

For example, the resource cost of an electric vehicle (EV) is the difference in its production cost

relative to a similar internal combustion engine (ICE) car minus their difference in operating

costs. To capture this in the model above, let ∆p denote the difference in cost of producing

good x relative to its alternative (e.g., EV versus ICE vehicle), and let ∆e denote the difference

in operating costs (often negative due to energy savings). The resource cost per ton is then

(∆p−∆e)/T , where T is the tons of carbon reduced from the good x relative to its alternative.

In the case where there are no alternative comparison goods and no operating cost differences

(e.g. if x is a one-time purchase of a device that reduces emissions), the resource cost per ton

is simply p/T .

The resource cost per ton (RCPT) may be a particularly appropriate measure if a company

10In the presence of firm markups (e.g., due to market power), there are additional terms in this expression.
In the numerator, dx is multiplied by the firm markup net of taxes, and, in the denominator, dx is multiplied
by the corporate tax revenue from firm profits.
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is looking to determine the least costly way to achieve a given reduction in CO2 emissions.11

In contrast to the MVPF, the RCPT is independent of the causal effect of a subsidy for the

product on take-up, ϵ. Generating one new purchase of an efficient appliance through a million

dollars of subsidies to inframarginal beneficiaries will have the same RCPT as a subsidy that

spends $1 to generate that same new purchase. Additionally, it ignores any non-resource costs

or benefits that flow to individuals in the economy. Environmental taxes have very low or

negative resource costs because they discourage the use of resources. They do so by placing a

burden on consumers, which is not captured in the resource cost per ton.12

Government Cost per Ton The “government cost per ton” of carbon abated measures the

reduction in tons of CO2 emitted per dollar of net government outlay (Knittel 2009, Gillingham

& Tsvetanov 2019).13 As shown in equation (4), the government cost is τdx + xdτ , which

generates a reduction in CO2 of Tdx. Taking ratios and re-arranging terms, the government

cost per ton is given by

GCPT =
p
−ϵ

+ τ

T
(7)

The first term, p/(−ϵ), is the inframarginal transfer the government makes to induce an ad-

ditional purchase of x; the second term, τ , is the cost to the government from the marginal

change in purchases.

Government cost per ton (GCPT) is the right conceptual measure for a government to use

if it is only concerned with reducing CO2 emissions. As a result of this, it omits all non-CO2

benefits. This means that the GCPT can actually exceed the social cost of carbon even if a

policy provides meaningful welfare gains.14 As is the case with the resource cost per ton, the

GCPT also omits the welfare costs placed on individuals as a result of environmental taxes.

Social Cost per Ton The third cost-per-ton measure found in the literature subtracts all

non-CO2 benefits from government costs to form its net non-CO2 social costs (Christensen

et al. 2023, Hughes & Podolefsky 2015). We refer to this measure as the “social cost per ton,”

or SCPT.

11Technically, this alignment requires the absence of taxes or subsidies, which could generate a wedge between
private costs and total resources.

12Similarly, individuals may optimize over non-resource considerations. Individuals might prefer to drive ICE
vehicles to EVs even if the EVs cost less to operate. Inducing an individual to switch to an EV does not
necessarily generate a private welfare gain for that individual even if it produces a resource saving.

13This measure is also sometimes referred to as the “program cost per ton” (Gillingham & Tsvetanov 2019,
Davis et al. 2014).

14This particular criticism has been expressed in previous literature. For example, Davis (2023) provides a
discussion of the cost effectiveness of heat pumps and notes “[i]t is tempting to compare the [cost per ton of
CO2 estimates] to estimates in the literature for the social cost of carbon. For example, the U.S. government
currently uses a social cost of carbon of $51 per ton (U.S. Interagency Working Group, 2021) and one recent
study finds a preferred social cost of carbon of $185 per ton (Rennert et al. 2022). However, this is not an
apples-to-apples comparison. Subsidies are transfers, not economic costs, and many households value subsidies
at close to $1-for-$1.” A similar criticism can be found in Knittel (2009).
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Conceptually, the goal of the social cost per ton is to capture all costs and benefits associated

with abating a fixed quantity of CO2. So, if a government’s goal is to reduce a fixed quantity

of CO2, it provides a social-welfare-based metric by which to judge the efficacy of that tonnage

reduction. To calculate the social cost per ton in our model, we can express the total externality,

V , as the sum of carbon and non-carbon benefits: V = SCC ∗ T + VNonCO2 , where VNonCO2

is the value of non-CO2 externalities per unit of x. In addition, we let ux denote the private

benefits provided by a unit of x to individuals. The social cost of the policy (excluding CO2

benefits) is given by the sum of private and social net costs:

Social Cost = xdτ + (p− ux)dx− xdτ − VNonCO2dx (8)

= τdx− VNonCO2dx (9)

where the second line invokes private optimization so that p−ux = τ . Taking the ratio relative

to the tons of carbon abated, the social cost per ton is given by:

SCPT =
τ − VNonCO2

T
(10)

The magnitude of the subsidy minus any non-CO2 benefits measures the magnitude of the

social cost of inducing additional consumption of x.15

Although this metric is designed to capture the social costs of each ton of CO2 abated, the

opportunity cost of raising funds is generally not considered. This is because inframarginal

transfers, xdτ , cancel out as both a cost and a benefit. As was the case with the RCPT, this

means that the SCPT for a subsidy for x does not depend on the causal effect of the subsidy on

the consumption of x. If two policies induce the same dx, they have the same SCPT, regardless

of how many inframarginal beneficiaries receive the transfer, xdτ .

It is worth noting that there is an alternative form of SCPT that is used in Fournel (2024)

but has not yet seen broader adoption in the literature measuring costs per ton. This approach

seeks to incorporate the opportunity costs of raising revenue by assigning a welfare cost of ϕ ≥ 1

to raising government revenue. (Here, ϕ corresponds to the MVPF of the policy used to raise

the revenue to form the budget-neutral policy.) The SCPT becomes:

SCPTϕ =
ϕτ + (ϕ− 1) p

−ϵ
− VNonCO2

T
. (11)

The elasticity, ϵ, no longer drops out of the expression, as it is needed to measure the cost

of the raising revenue. It is straightforward to show that if SCC = SCPTϕ, then the MVPF

of a subsidy for x is equal to ϕ (instead of 1 for the standard SCPT). In this sense, testing

15When τ is set at its Pigouvian level, V , the SCPT is equal to the SCC. In this sense, the SCPT is related
to the MVPF: We have SCPT = SCC if and only if the MV PF = 1.
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for whether SCPTϕ > SCC is equivalent to testing whether MV PF > ϕ – i.e., whether the

MVPF of the spending policy exceeds the MVPF of raising the revenue.

Determining the right ϕ, however, is no easy task. Although the most common value

assumed is the cost of raising the income tax, a central lesson from public economics over the

last 50 years is that there is no single ϕ even when considering a change in the income tax

schedule (Mirrlees (1971); Mirrlees (1976); Saez (2001); Kleven & Kreiner (2006); Jacobs et al.

(2017); Bourguignon & Spadaro (2012); Hendren (2020)). Raising revenue from the bottom

of the income distribution can generate values of ϕ around 1; raising revenue from the top

of the income distribution generally yields estimates of ϕ around 1.5-2 (Hendren 2020), and

potentially even higher than 2 using recent elasticity estimates from Kleven et al. (2024). In

Section 8, we show how the value of the SCPT is influenced by the assumed value of ϕ of the

policy used to close the budget constraint.16

One final note on the SCPT approach is that one should be cautious when interpreting

the ordering of policies with negative SCPTs. Holding net social costs fixed, policies that

abate more CO2 actually have higher (less negative) SCPT. This is related to the fact that the

SCPT no longer retains its interpretation as a Lagrange multiplier on a tonnage constraint for

a decision-maker seeking to minimize social costs. We return to this issue below in Section 8,

in particular when comparing the SCPT of EV and Wind subsidies.

Summary In summary, the MVPF measures the benefits per dollar of government spend-

ing. This estimand aligns with our goal of finding policies to maximize social welfare subject

to a government budget constraint. The cost-per-ton approach focuses on the cost of achieving

a given level of CO2 reduction. The key question when constructing cost per ton is what defi-

nition of “cost” to use, as each of these definitions correspond to different objectives (minimize

resources, government expenditures, or social costs). While we focus our primary analysis on

the MVPF, we also construct each of the cost-per-ton metrics to study the lessons they provide

and how they differ from the MVPF approach.

2.4 Learning by Doing

A key rationale for many clean energy subsidies and other environmental policies is learning

by doing: subsidies that increase demand today can lower the future marginal cost of new

technologies (Acemoglu et al. 2012, Bistline et al. 2023). Industries, particularly those charac-

terized by rapidly changing technologies, may learn as a result of their production experience.

The model environment above considers only the static environmental externality, V , from the

purchase of a good, x. Here, we use a dynamic version of this model featuring learning by doing

16One way to think about the tradeoff between the MVPF and the SCPT in this context is that the MVPF
requires making an assumption about the social cost of carbon and the SCPT requires making an assumption
about the cost of raising revenue.
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to show how the associated externalities can be measured.17

Existing evidence suggests that learning-by-doing effects may be present in the production

of solar cells, wind turbines, and batteries. Appendix Figure 1 reproduces evidence from Way

et al. (2022) showing the relationship between the marginal cost per kW of wind and solar

energy (and per kWh of battery storage) plotted against cumulative production. Their analysis

shows that a 1% increase in cumulative solar production is associated with a 0.319% reduction

in price. For wind and EV batteries, the associated price reductions are 0.194% and 0.421%,

respectively. If one believes that these patterns reflect causal spillovers from learning by doing,18

to what extent should that change their views about the welfare effects of subsidies for those

goods?

The contribution of this section is to provide a new sufficient statistics result that measures

the benefits from learning by doing.19 We show that when the marginal cost of production is

an isoelastic function of cumulative production and when demand is an isoelastic function of

price, this leads to a second-order ordinary differential equation that can be solved to estimate

society’s willingness to pay for the learning-by-doing effects. Intuitively, subsidizing production

today causes the economy to “move forward in time,” lowering the cost of production. Thus,

future consumers pay lower prices, and this price reduction generates additional environmental

benefits from further purchases of the the clean good.

To illustrate this, we return to our example of a subsidy for a good, x. We bring the model

into a continuous time environment, where time is indexed by t ≥ 0. We imagine the subsidy

of interest is a short-term subsidy enacted at time t∗. We wish to incorporate the welfare

benefits accruing in future periods, t > t∗. Let x(t) denote consumption of x at each time t and

let X(t) =
∫ t

0
x(s)ds + X(0) denote cumulative production through time t. Motivated by the

historical evidence in Appendix Figure 1, which is also known as “Wright’s Law” (Wright 1936),

suppose that the marginal cost of production at each point in time is an isoelastic function of

cumulative demand,

c(X(t)) = κX(t)θ (12)

where θ < 0 is the elasticity of marginal cost with respect to cumulative production. Suppose

also that the choice of x(t) at each point in time depends on the price with a constant price

17For simplicity of exposition, we omit some features of the environment that we include in our empirical
implementation, such as firm markups. Appendix B provides this more general model that we use in our
empirical implementation.

18The extent to which the curve represents learning spillovers has been debated (Nemet 2006, Nordhaus
2014b, Rubin et al. 2015). See Lafond et al. (2022) for an estimate of the causal impact of learning by doing
on military production. In the context of this paper, we take these learning-by-doing effects as given and then
show the robustness of our results to the omission of learning-by-doing effects. There is quasi-experimental work
that has found evidence of potential spillovers in solar production (Banares-Sanchez et al. 2023) and in wind
installations in California (Gillingham & Stock 2018). We supplement this with additional analysis in Appendix
Table 2. It shows the learning patterns largely hold even after controlling linearly for time and contemporaneous
production.

19Our approach relates to work by van Benthem et al. (2008), who develop a dynamic model of learning by
doing, and Bistline et al. (2023), who incorporate learning by doing into their assessment of taxes and subsidies.
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elasticity of demand, ϵ < 0,

x(t) = ap(t)ϵ. (13)

This specification assumes the elasticity of demand is sufficient for understanding how future

demand will evolve as prices fall from learning by doing. Finally, assume for expositional

purposes that there is perfect static competition at all points in time and no future subsidies

so that prices are set equal to marginal cost, p(t) = c(X(t)). Appendix B shows how we relax

this assumption in practice and allow for firm markups.

Learning by doing generates two types of externalities: a price externality and an environ-

mental externality. The price externality arises because an increase in production of x(t) today

(e.g., at time t = t∗) will generate consumer surplus via a reduction in prices faced by future

customers (at time t > t∗). Let dp(t) denote this impact on prices at each time t. The envelope

theorem implies that the WTP for the price decline at each time t is given by −dp(t)x(t), where

x(t) is the planned consumption at time t. In other words, the welfare gain is given by the

price reduction times the counterfactual path of consumption in the absence of the subsidy.20

The environmental externality arises because the price reduction caused by the subsidy will

increase future consumption of the good, dx(t), and, consequently, generate a positive environ-

mental externality. This externality is given by Vtdx(t), where we now introduce a t subscript

to allow the environmental externality to vary over time. For example, this allows the SCC to

increase or the cleanliness of the electrical grid to improve over time. The key to measuring

our two externality terms is that we need to know how much prices decline, dp(t), and how

much consumption increases, dx(t), in response to an increase in consumption of x today (e.g.,

at time t∗). With those terms in hand, we can then integrate over all the future price benefits,

−dp(t)x(t), and environmental benefits, Vtdx(t), over time t > t∗.

How can we use this setup to measure the future price and quantity impacts of a policy

that increases demand today? Our analysis relies on two key insights. First, we know that the

impact of a subsidy x(t) at some time, t∗, will affect future prices proportional to the amount

that it increases cumulative production. While this effect can be mathematically complicated,

the use of an autonomous supply and demand system allows us to re-frame the problem: we

can think of the subsidy as moving us forward in time by some amount, dt. That shift in time

is proportional to the size of the subsidy and the magnitude of the demand response when the

subsidy is operating at time t∗.

20We assume learning by doing provides knowledge externalities to the entire market. It could be that learning
by doing occurs within firms and is fully internalized. In that latter case, a subsidy might have no learning-
by-doing price benefits for consumers. Moreover, learning-by-doing externalities are different from economies
of scale, which are about reducing the fixed costs of production. As Borenstein (2012) notes, this difference
might have important implications for public policy. In our modeling, we provide an optimistic interpretation
of current subsidies lowering future costs through learning-by-doing externalities. In particular, we assume no
internal capture of learning-by-doing benefits and no economies of scale, although this assumption has been
questioned in the solar and wind industries (Nemet 2006, Söderholm & Sundqvist 2007). Such concerns would
dampen the magnitude of the true learning-by-doing benefits we estimate using our approach, but as we discuss
below, this would not affect our core empirical lessons.
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Moving forward in time lowers marginal costs at each point in time (and thus prices) by

dp(t), given by

dp(t) = c′(X(t))X ′(t)dt (14)

= c′(X(t))x(t)dt (15)

= κθX(t)θ−1x(t)dt (16)

Also, moving forward in time leads to a change in consumption of the good given by dx(t) =

X ′(t)dt.

Our second insight is that our demand and cost equations imply that the future time path

of x(t) is the solution to a second-order autonomous ordinary differential equation. To see

this, note that log(x(t)) = log(a) + ϵ log(p(t)) and log(c(t)) = log(κ) + θ log(X(t)). Totally

differentiating yields

d log(x(t)) = ϵd log(p(t)) (17)

= ϵd log(c(t)) (18)

= ϵθd log(X(t)) (19)

(20)

Noting that X ′(t) = x(t) and the formula for the derivative of logs yields

X ′′(t)

X ′(t)
= ϵθ

X ′(t)

X(t)
(21)

which is a second order autonomous ODE that we show has a closed-form solution. Combining

these two insights leads to the core result in Theorem 1.

Theorem 1. (Learning by Doing). Let the marginal cost be given by equation 12 and

demand be given by equation 13. Suppose prices are set at marginal cost in all periods. Then,

the willingness to pay for the future change in prices, DP , is given by

DP =
θϵ

1− θϵ
(t∗)−θ

(1+ϵ)
1−ϵθ

∫ ∞

t∗
e−ρ(t−t∗)t−1+θ 1+ϵ

1−ϵθ dt (22)

where

t∗ =
Xinit

xinit(1− ϵθ)
(23)

is the normalized ratio of cumulative to flow production at the time the subsidy is enacted.

Given the time path of the value of environmental externalities, Vt, the willingness to pay for
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future environmental benefits, DE, is given by

DE({Vt}) = − ϵ2θ

(1− ϵθ)c(X (t∗))
t∗−

ϵθ
1−ϵθ

∫ ∞

t∗
e−ρ(t−t∗)t

2ϵθ−1
1−ϵθ Vtdt (24)

Combining, the MVPF of a subsidy at time t∗ is given by

MV PF =
1 + V

p
(−ϵ) +DP +DE

1 + τ
p
(−ϵ)

. (25)

The present value of tons of carbon removed from the policy change is now T+DE({SCCt})/SCC0.

And the social cost per ton now subtracts the price and non-CO2 benefits, DP+DE({VNonCO2}),
so that the social cost per ton now becomes

SCPT =
τ − VNonCO2 −DP −DE({VNonCO2})

T +DE({SCCt})/SCC0

(26)

where the numerator contains the price and non-CO2 benefits while the denominator adds the

PDV of future carbon reduction.

Proof: See Appendix B.

This theorem illustrates how one can incorporate learning-by-doing externalities into a wel-

fare analysis of subsidies or taxes. Calculating these new terms, DE and DP , requires four

inputs: (1) the elasticity of demand with respect to price, ϵ, (2) the elasticity of marginal cost

with respect to cumulative production, θ, (3) cumulative production at the time of the subsidy

X(t∗), and (4) product cost at the time the subsidy, c(X(t∗)). The first and fourth terms, ϵ and

c(X(t∗)), are generally necessary for the construction of the static MVPF, indicating that only

two new terms, θ and X(t∗), are needed to construct these learning-by-doing welfare estimates.

We use estimates of historical sales numbers to construct X(t∗) and use estimates from Way

et al. (2022) of the relationship between cumulative production and price to construct our cost

curve parameter θ. The price elasticities, ϵ, come directly from each paper in our sample.

In our analysis below, we incorporate these learning-by-doing effects into our estimates for

the MVPFs and cost-per-ton estimates of subsidies for wind, solar, and electric and hybrid

vehicles (and the indirect effects of gasoline taxes on EVs).

3 Data and Sample

3.1 Sample

We analyze the welfare impact of 96 US spending and revenue-raising policies that affect

greenhouse gas emissions and have been rigorously evaluated in the last 25 years using quasi-

experimental or experimental methods. These policies span subsidies, nudges, and revenue
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raisers. As detailed in Appendix E, we form our sample from the full set of articles in 18 major

journals in economics from January 1999 through December 2023, and supplement that with

articles cited within these papers (a.k.a. a “snowball” sample). Within the category of subsi-

dies, we analyze seven sub-categories: wind production tax credits, residential solar subsidies,

electric vehicle subsidies, hybrid vehicle subsidies, vehicle buyback rebates, energy efficiency

subsidies, and weatherization subsidies. Within the category of revenue raisers, we analyze

four sub-categories: gasoline taxes, other fuel taxes (such as jet fuel and diesel taxes), other

revenue raisers (including the California Alternative Rates for Energy), and cap-and-trade poli-

cies.21 We also supplement this sample with a selected set of international policies that have

been evaluated in the past ten years.

Appendix Table 1 presents a list of all of our policies. For each policy, we list the cat-

egory, sub-category, year(s) of implementation, location of implementation, and the paper(s)

estimating its causal effects. In certain cases, we observe some, but not all, of the relevant in-

puts necessary to construct an MVPF. In those instances, we provide an MVPF for the policy

(under assumptions outlined in each policy’s appendix) but only include it in our “extended”

sample (denoted by “*” in Appendix Table 1). Extended sample policies are excluded from

any category averages reported in the paper.

Publication Bias Our analysis is inevitably constrained by the set of studies available in the

literature. This sample is potentially biased due to the fact that statistically significant studies

are more likely to be published. In Appendix F, we present evidence of modest publication

bias in the environmental economics literature: estimates are roughly two times more likely

to be published if they cross a t-stat of around 2. To assess how this could impact our broad

conclusions, we use the methods of Andrews & Kasy (2019) to correct for publication bias.

This leaves our estimates largely unchanged and our conclusions unaffected. We present the

unadjusted estimates throughout the remainder of the paper.

In-Context versus Baseline MVPFs For each policy change in our sample, we form two

conceptually distinct welfare estimates. First, we consider the welfare impact in the context

(year and location) in which the policy change occurred. For example, if we have estimates

from an EV subsidy program in California in 2014, we use measures of the CA electric grid

in 2014 to quantify the externalities due to reductions in gasoline usage offset by increased

electricity use. We use the CA gasoline tax rate in 2014 to quantify the lost state government

revenue from reduced gas purchases. These “in-context” measures capture the welfare impact

of the policy as it was enacted.

21While regulatory policies are generally beyond the scope of our analysis, Appendix G includes analysis of
CAFE standards and renewable portfolio standards. The Appendix outlines how to use the MVPF to compare
a regulatory policy to a distributionally-equivalent tax and spending policy. A detailed assessment of this
approach is left to future work, but this comparison provides a potentially unified treatment of tax/expenditure
and regulatory policy within the MVPF framework.
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Second, we construct the welfare impacts for each policy as if it was implemented nationally

in the US in 2020. The key assumption required for this exercise is that the original elasticity

estimated in each paper would also determine the behavioral response to federal policy in

2020. We then apply 2020 measures of the tax rates and values of externalities to measure

the environmental and fiscal externalities from the policy. This approach harmonizes welfare

comparisons across policies holding the contextual environment fixed. We refer to this as our

“baseline” specification.

3.2 Valuing Environmental Externalities

We seek to apply a consistent and comprehensive method to value the range of externalities

generated from each policy. We discuss these valuations briefly here and provide further details

in Appendix C.

Greenhouse Gas Emissions CO2 is a key greenhouse gas contributing to climate change.

Our baseline estimates place a monetary cost on CO2 emissions following the Environmental

Protection Agency’s 2023 guidance regarding the social cost of carbon at a 2% discount rate

(EPA 2023). This model implies that the social cost of carbon is $193 per ton of emissions in

2020 and increasing over time. We also show the robustness of our results to other values of

the SCC, including $76, $337, and $1367.22

We use the time path of the SCC to measure the environmental externality from each policy

when calculating the MVPF. For example, a subsidy that leads to the installation of a wind

turbine in 2020 will reduce emissions from 2020 through 2045. We use the year-specific SCC to

value the associated externalities. For consistency, we apply the 2% discount rate to translate

costs and benefits into 2020 present-value dollars. In addition to CO2, we also incorporate costs

from other greenhouse gases where available, including methane (CH4), nitrous oxide (N2O),

carbon monoxide (CO), and hydrocarbons (HC). These valuations comprise a much smaller

fraction of the greenhouse gas benefits we estimate and are discussed in detail in Appendix C.

There are three key things to note about our approach to quantifying the value of reducing

greenhouse gas emissions. First, we require the SCC to be the sum of individuals’ private

willingnesses to pay for reduced CO2 emissions. This is consistent with typical Integrated

Assessment Models (IAMs). RICE and DICE focus on GDP or GDP-equivalent damages,

which correspond to private measures of damages. Other IAMs, such as the GIVE model,

infer an SCC from VSL estimates and use private VSLs that are not adjusted with welfare

22The 2% discount rate is the typical approach assumption in the environmental economics. literature (Nesje
et al. 2023). The SCC of $193 in 2020 aligns closely with several other estimates from integrated assessment
models (IAMs), such as the GIVE model in Rennert et al. (2022). The $76 (calculated with a 2.5% discount
rate) SCC comes from Interagency Working Group (2021) and represents the largest SCC estimate for 2020
presented in earlier guidelines. The $337 (calculated with a 1.5% discount rate) represents the largest SCC for
2020 reported in the EPA’s most recent guidelines (EPA 2023). The $1367 is the main point estimate from Bilal
& Känzig (2024).
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weights. These models also generate an SCC that corresponds to a private willingness to pay.

By contrast, some have proposed equity-weighted social costs of carbon that adjust for welfare

weights when forming the SCC (Prest et al. 2024). While the MVPF framework allows for

equity weights, such weights are most appropriately excluded from the MVPF and instead

applied ex-post when making policy comparisons, as in equation (2).

Second, the SCC embeds within it a real discount rate (2% in our baseline case) that

captures the real cost to society of moving resources across periods. The application of this

discount rate normalizes the willingness to pay in units of 2020 dollars for all comparisons, even

across future generations. This discount rate does not, however, make any claims about the

decision-maker’s preferences across time. If a decision-maker places greater (or lower) weight

on future generations, they will simply place a higher (lower) social welfare weight on those

future beneficiaries. In the context of equation (2), this represents a modification of η to reflect

weights on future generations.

Third, our calculations rely on estimates of the incidence of the social cost of carbon. In

particular, the MVPF (and government cost per ton) requires isolating the portion of the

social cost of carbon that is borne by the government. Correctly calculating these components

requires identifying the incidence of the SCC. To account for this, in our baseline specification

we assume a US incidence of 15%, following the US share of GDP in the global economy. This

also corresponds to the assumption made in many models such as DICE (Nordhaus 1993).23

Within this 15%, we assume in our baseline specification that 50% of this valuation is the

result of changes in productivity that have direct effects on tax revenue (e.g., due to changes in

agricultural productivity). We assume a tax rate of 25.54% as this is the 2020 tax-to-GDP ratio

for the US (OECD 2021). (This captures both corporate and individual (labor income) taxes.)

These numbers together imply that 13%(= 15− .2554∗ .5∗15) of the incidence from changes in

carbon emissions falls directly on US residents while just under 2%(= .2554∗ .5∗15) falls on the

US government as changes in tax revenue. As it turns out, accounting for this fiscal externality

has no bearing on any of our results for domestic subsidies, nudges, or revenue raisers. By

contrast, the US-specific fiscal externality can get quite large for international policies. In that

section, we analyze the robustness of our conclusions to those incidence assumptions.

Local Pollutants While greenhouse gases yield global externalities, a range of local pollu-

tants produce negative health effects on individuals near the source of emissions. In order to

value these externalities, we use the AP3 integrated assessment model (Tschofen et al. 2019),

which measures the marginal health impacts of additional emission of NH3, HC, NOX , PM2.5,

and SO2 in each county in the US. When measuring the local pollution externality from in-

creased electricity usage, we take county-level damages estimated in AP3 and weight by fuel

23Other IAMs explicitly measure the distributional incidence of global damages. For example, Nordhaus
(2014a, 2017) notes that the three models from the Interagency Working Group (Interagency Working Group
2021) on the social cost of carbon report US incidences of 10% for RICE2010 (Nordhaus 2010), 17% for
FUND2013 (Anthoff & Tol 2010, 2013b,a), and 7% for PAGE2011 (Hope 2006, 2008).
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consumed for electricity generation. When considering increased gasoline vehicle usage, we

weight by county-level total vehicle miles traveled. Following (Tschofen et al. 2019), we mone-

tize those health impacts using a VSL of $9.5 million (EPA 2010).

From Causal Effects to Externalities For each policy in our analysis, we translate its

causal effect (e.g., purchases of EVs in response to subsidies) into the externalities it generates

(e.g., the various pollutants discussed above) using a consistent approach across all policies. For

example, consider policies that alter electricity usage. Some of these policies, such as residential

solar subsidies, might generate new sources of electricity. Other policies, such as rebates for

energy-efficient appliances, might reduce existing electricity usage. In order to identify the

change in emissions from changes in electricity generation, we use estimates from EPA’s Avoided

Emissions and Generation Tool (AVERT) (EPA 2024). This provides year- and location-specific

estimates of marginal emissions rates per kWh of electricity generated. We then use projections

of the grid composition from Jenkins & Mayfield (2023) to measure future emissions. We also

consider a class of policies that affect vehicle usage and gasoline consumption. In those cases, we

estimate the change in gallons of gasoline used relative to a counterfactual vehicle. We measure

the total CO2 associated with the production and combustion of gasoline. We draw upon

estimates from National Emissions Inventory, the Inventory of U.S. Greenhouse Gas Emissions

and Sinks, as well as the EIA’s reported CO2 emissions coefficients. We describe these estimates

in detail in Appendix C.

Appendix Figure 2 presents the environmental damages over time from driving and using

electricity. Panel A presents the dollar value of the local and global externalities generated per

gallon of gasoline used by the average light-duty, gasoline-powered vehicle. It shows that average

non-CO2 emissions have declined over the last several decades, and there has been a shift in

the share of total pollution externalities driven by CO2 emissions.24 Panel B reports average

emissions from the electricity grid over time. It shows a gradual reduction in emissions as more

clean energy (and lower-carbon energy) has come online. This is supplemented by evidence

in Panel C, which shows the geographic variation across the US in emission externalities, as

measured in 2020. The Northeast and California have the cleanest grids (lowest environmental

externality per mWh), and the Midwest and has the dirtiest electric grid. We discuss below

how this leads to heterogeneity in the welfare impacts of policies that are targeted to different

regions of the US.

24The graph also includes the impact of other vehicle externalities – congestion and accidents. For vehicle
accidents, we use results from Jacobsen 2013, who estimates that a 1% reduction in vehicle miles traveled leads
to 263 fewer fatalities in the US. We again apply a VSL of $9.5 million to yield a $0.08 per-mile externality. For
congestion due to light-duty vehicles, we take an average of externality measures from Parry & Small (2005),
Parry et al. (2014), and Couture et al. (2018) to yield an externality of $0.03 per mile.
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4 Subsidies

The next four sections of the paper present the MVPF results for subsidies, marketing and

nudges, revenue raisers, and international policies. We begin with a detailed description of the

way in which we construct MVPF estimates for EV subsidies. We use this example because it

utilizes nearly all of the machinery we develop to construct environmental MVPFs and cost-

per-ton metrics.

Subsidies for Electric Vehicles We begin with a discussion of the MVPF for EV subsidies

using estimates from the California Enhanced Fleet Modernization Program (EFMP) studied

in Muehlegger & Rapson (2022). The authors use zip code variation in subsidy eligibility to

estimate a price elasticity of demand of -2.1. They also find that 85% of the subsidy is passed

to consumers while 15% is captured by dealers via higher prices. To evaluate the MVPF, we

consider a $1 increase in EV subsidies. Figure 1 outlines each of the components of our MVPF

estimate.

To begin, consumers who would have bought EVs anyway are willing to pay $0.85 for the $1
higher subsidy, while dealers are WTP $0.15. The incidence does not affect the overall WTP

but can affect the average welfare weight, η, one might assign to the beneficiaries of the policy.

The $1 subsidy generates environmental externalities from the increase in EV purchases.

We use estimates from Holland et al. (2016) to calculate the fuel economy of the counterfactual

car that a marginal EV customer would have purchased. (This is generally cleaner than an

average new car.) We combine this with an estimate of vehicle miles traveled for EV purchasers

from Zhao et al. (2023) to measure the reduction in CO2 from gasoline consumption. Valuing

this using our SCC model of $193 in 2020 yields a welfare gain of $0.17.

The environmental gains from reduced gasoline consumption are partially offset by the

emissions generated from increased electricity consumption over the life of the EV. We use esti-

mates from AVERT (EPA 2024), combined with future grid forecasts from Princeton REPEAT

Project (Jenkins & Mayfield 2023) to measure the current and future CO2 emissions required

to power the EVs. We also account for the fact that greater electricity use will raise prices

– a so-called “rebound” effect. Using a demand elasticity of -0.19 and a supply elasticity of

0.78 from (DOI 2021) suggests that roughly 20% of the increased electricity demand from EVs

displaces other uses of the electricity due to higher prices. On net, this suggests the increased

electricity use generates $0.10 in global damages.

Finally, the production of the EV is generally more carbon intensive than an ICE vehicle

due to the battery production. We incorporate estimates from Winjobi et al. (2022) that

suggest that battery production releases 0.06 tons of CO2 per kWh, which corresponds to a

CO2 externality of $838 per EV or -$0.03 per dollar of EV subsidy.

In addition to CO2, we also incorporate the benefits and costs of local pollutants, including
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NOX , PM2.5, HC, CO, SO2, and NH3. The reduction in gasoline consumption generates

benefits of around $0.02. This is nearly perfectly offset by the increase in emissions from

electricity production, for a net gain of less than $.01. Summing across all initial environmental

externalities, we obtain a welfare gain of $0.07.

This $0.07 is the initial environmental benefit of the $1 subsidy. The next bars in Figure 1

present the estimated externalities due to learning by doing in battery production. Way et al.

(2022) estimate that a 1% increase in cumulative battery production leads to a reduction in

battery costs of 0.42% (θ = −0.42). Combining this with the demand elasticity of ϵ = −2.1

suggests that the increased future demand for EVs yields environmental benefits of DE = $0.04

per dollar of the mechanical subsidy and benefits from lower future prices of DP = 0.31. We

again note that the inclusion of these benefits relies on the assumptions that the reductions in

battery costs are (a) the causal effect of cumulative production and are (b) generating spillovers

across firms (i.e. the gains are not internalized within firms or in patent markets). Thus, we

present results below with and without these learning-by-doing terms.

The last components of WTP in Figure 1 consider the willingness to pay from changes in

firm profits. A change in the mix of goods consumed in the economy generates changes in profits

to the extent to which markups vary across goods (Kaplow 2023). We assume EVs and ICE

vehicles have the same markups, so that shifts towards EVs do not directly generate changes in

producer profits. We do incorporate differential markups among gasoline and energy suppliers.

Combining estimates from EIA (2024c,b,a), Favennec (2022), and EIA (2022), we calculate an

average markup per gallon of gas of $0.61 per gallon, or 27% of the 2020 retail price. Estimates

from EIA (2023), Wiser et al. (2023), and Bolinger et al. (2021) suggest a markup on electricity

of 20.9%. Both values exceed the average 8% markups found in De Loecker et al. (2020).25

Applying these net markups to the change in electricity and gasoline consumption, we estimate

a WTP of $0.01 per $1 of subsidy. Summing across all of the WTP components yields a WTP

of $1.38 per dollar of mechanical subsidy.

Next, we turn to the denominator of the MVPF. The government cost of the subsidy sums

the $1 mechanical cost and the fiscal externalities resulting from changes in EV purchases.

The first such cost is the added cost from pre-existing EV subsidies. In 2020, the average

federal credit for an EV purchase was $43 (Tesla had exhausted its subsidies in 2020) while the

average state subsidy was $604. The increased EV purchases thus generates a fiscal externality

of $0.001 from the federal subsidy and $0.02 from an average state subsidy. In addition, the

reduced gasoline consumption generates a loss of $0.04 in gas tax revenue and a loss of $0.01
in corporate tax revenue per dollar of subsidy.

Finally, we incorporate a positive impact on the US government’s budget due to reductions

in climate damages. According to a wide class of IAMs, the SCC is driven by a combination

of health and productivity effects. These productivity effects can have a direct effect on US

25These markups also generate changes in government cost due to corporate tax revenue and the fact that
28% of utilities are publicly owned. We incorporate these in our net cost estimates.
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government revenue. In our baseline specification, we assume that half of the SCC is due to

productivity effects and that 15% falls on the US economy (proportional to its share of global

GDP). Applying a 25.5% tax rate to these productivity gains yields a fiscal externality equal

to $0.003 for every $1 in subsidies. These “climate fiscal externality” effects are quite small for

all domestic policies in our sample, but we return to them in Section 7 when we analyze the

MVPFs of international policies.

Adding these costs together, we estimate a net cost of $1.07 for every $1 in mechanical

subsidy costs. When we take the ratio of the willingness to pay and the net cost, we arrive at

a baseline MVPF of 1.30. One dollar of net government expenditures on EV subsidies in 2020

generates $1.30 in benefits to individuals in society.

The bars in Figure 1 also shed light on the incidence of EV subsidies: 95% of the benefits

of the government expenditure flow to individuals buying and selling EVs, while just 5% of the

benefits flow to the rest of society through an improved environment. Most of these benefits

to buyers and sellers are inframarginal transfers, resulting in an MVPF not much above 1.

Inducing a new EV purchase costs the government roughly $30,00026, much larger than the

environmental and learning-by-doing benefits of the subsidy.

Table 1 presents the baseline MVPFs for the rest of the subsidy policies in our sample.27

For EVs, we consider two other estimates from the literature – Clinton & Steinberg (2019) who

find a price elasticity of -2.93 and Li et al. (2017) who find a price elasticity of -2.61.28 These

lead to MVPFs of 1.56 and 1.47, respectively. We then construct a category average MVPF by

envisioning a policy that splits $1 in upfront spending equally across the three policies. This

means we compare the average willingness to pay per dollar of upfront spending to the average

net cost per dollar of upfront spending. This yields a category average MVPF of 1.45. We can

also use the standard errors of each price elasticity in our analysis to construct bootstrapped

confidence intervals. This yields a 95% confidence interval of [1.23, 1.94] for EV subsidies. Our

confidence intervals for each policy are presented in Appendix Table 4.

Wind Production Tax Credits We find MVPFs for wind production tax credits (PTCs)

that generally exceed 4, which is well above our estimates for EV subsidies. These subsidies

pay producers a fixed payment per kilowatt hour of production of clean energy, typically for ten

years after installation. We draw upon three papers estimating the elasticity of wind turbine

investment with respect to these production tax credits in the US: Hitaj (2013), Metcalf (2010),

26EV prices in 2020 were approximately $54, 000. The product of the price elasticity and pass-through rate
from Muehlegger & Rapson (2022) is -1.78, implying a payment of approximately $30,000 per induced purchase

27Appendix Table 3 reports all MVPFs for our in-context specifications that use externalities and prices from
the time and place the policy is implemented as opposed to our national 2020 harmonized baseline.

28We do not include any estimates of the impact of charging station subsidies (there is no quasi-experimental
evidence on the effects of such policies in the US). However, work by Cole et al. (2023) uses a calibrated structural
model to compare subsidies for EVs with subsidies for charging infrastructure. They find that $10B in subsidies
generate a reduction in 884 million tons of $CO 2$ in subsequent decades. Applying our baseline SCC model
and ignoring non-CO2 benefits suggests an MVPF in excess of 10, exceeding most MVPFs in our sample.
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and Shrimali et al. (2015). We also supplement these results with six elasticity estimates from

papers studying the impact of variation in feed-in-tariff rates in Europe.29

Figure 2 Panel A presents the components of WTP and net government cost using the

elasticity from Hitaj (2013). The environmental benefits from the subsidy are much larger than

those for EVs and sum to $3.45 per dollar of mechanical subsidy. This is not because the price

elasticity of wind turbines is larger (the price elasticity is -1.13 as opposed to -2.1 for EFMP

above). Rather, it is because $1 of induced spending on a wind turbine delivers more than $3
of global environmental benefits from displacing the dirty production of electricity, while $1 of

induced spending on an EV generates less than $0.04 in global environmental benefits.

The next bars capture learning by doing benefits. Way et al. (2022) estimate that a 1%

increase in cumulative production leads to a reduction in wind turbine costs of 0.19% (θ =

−0.19). This leads to $1 in future environmental benefits and $0.46 in benefits from lower

future prices of wind turbines. Combining together all our willingness to pay components

produces a net WTP of $5.90 per dollar of mechanical wind PTC.

For the net government cost, we begin with the $1 mechanical cost of the policy and add the

fiscal externality associated with the baseline PTC subsidy. In 2020 there was a PTC subsidy

equal to 1.5 cents per kWh, which leads to a fiscal externality of $0.35 per dollar of mechanical

subsidy. Long-run climate benefits also generate a negative fiscal externality of $0.08. Taken

together we estimate a net cost of $1.28. Dividing the WTP of $5.90 by this net cost yields an

MVPF of 4.63.

Figure 2 Panel B plots the MVPF estimates for wind subsidies and shows how our baseline

MVPFs vary with the magnitude of the price elasticity. The other two studies we consider

have elasticities of -1.3 (Metcalf 2010) and -1.75 (Shrimali et al. 2015), yielding MVPFs of 5.30

and 7.55, respectively. This yields a category average MVPF of 5.87 for wind PTCs, with a

confidence interval of [2.73, ∞], and we reject the hypothesis that EVs have a higher category

average MVPF than wind PTCs with a p-value less than 0.001. In order to ensure that this

high MVPF is not driven by the small sample of available quasi-experimental estimates, we also

compare our estimates to those derived using elasticity estimates from “feed in tariff” policies

in Europe that guarantee producers elevated prices for their clean energy generation. Figure 2

Panel B shows that these elasticities have a wide but roughly similar range to those in the US.

Including European elasticities in our category average calculation would generate an MVPF

of 5.93 as opposed to 5.85 using only US-based studies.

Residential Solar Subsidies The US federal government and many US states have enacted

large subsidies to encourage residential solar installation. Figure 3 Panel A presents the com-

ponents of the WTP and net cost of the MVPF using estimates from Pless & van Benthem

(2019). We find an MVPF of 2.71, in between the MVPFs for EV subsidies and Wind PTCs.

29We do not provide in-context estimates for non-US studies, but instead focus on the implications of their
price elasticity estimates for the US 2020 MVPF of wind subsidies.
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As compared to wind PTCs, residential solar has a similar price elasticity but a smaller en-

vironmental benefit per dollar of induced spending. Residential solar also has a high learning

rate from Way et al. (2022) (θ = −0.32) leading to large learning-by-doing effects. Figure 3

Panel B presents broadly similar patterns using four causal effect estimates of solar subsidies

from the literature. We find a category average MVPF of 3.86 (CI of [1.97,33.89]) that falls to

1.45 in the absence of learning by doing effects.

Even with learning-by-doing effects, residential solar subsidy MVPF estimates are substan-

tially lower than our estimates for wind PTCs (3.86 versus 5.87). This difference may be

driven by the distinction between utility-scale and residential energy production, rather than

the distinction between wind and solar. With falling solar prices, the 2020 (levelized) cost of

energy via utility-scale solar was roughly on par with the costs of utility-scale onshore wind.

By contrast, the costs of residential solar remained more than two times higher than utility

scale solar. While there are no quasi-experimental estimates of the impact of utility-scale solar,

we can return to our wind PTC setting and imagine a similar subsidy for solar installations.

Assuming the elasticity of solar installations is similar to historical wind PTC elasticities (-1.3),

we can use the utility-scale solar costs per kWh to estimate an MVPF. Here, one motivation

for assuming the -1.3 elasticity is similar for utility-scale wind and solar is that it captures a

structural user cost elasticity that is plausibly constant across investment types. Under that

assumption, we find the MVPF of utility-scale solar subsidies would be 10.97, well above our

estimates for the wind PTC. Given this, a natural conclusion from our analysis is that subsidies

to utilities for either wind or solar have higher MVPFs than residential solar subsidies.

Other subsidies Figure 4 presents the MVPFs for each subsidy in our sample along with

the category average MVPF and its 95% confidence interval. In contrast to the higher MVPFs

discussed above, we find smaller MVPFs for the majority of the remaining subsidies in our

sample, including appliance rebates, hybrid vehicle subsidies, vehicle retirement programs, and

weatherization subsidies. These policies have MVPFs near 1, with category averages whose

confidence intervals fall below the confidence intervals for EVs, residential solar, and wind

PTCs. While these other consumer subsidies can induce some changes in purchases, Table 1

shows that the magnitudes of the resulting environmental benefits are small relative to the size

of the mechanical transfer offered by these policies. For every dollar of government spending,

the average appliance rebate in our sample delivers twice as many inframarginal benefits ($0.87)
as environmental benefits ($0.45). In other words, these policies are mostly transfers to those

who would have purchased energy-efficient appliances anyway.

Summary The main lesson from this analysis is that subsidies for investments that di-

rectly displace the dirty production of electricity—namely, wind PTCs and residential solar

subsidies—have the highest MVPFs. In particular, production tax credits for firms that pro-

duce wind energy have the highest MVPFs, generally exceeding 5. Subsidies to individuals who
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install residential solar panels also have high MVPFs exceeding 3.30 By contrast, EV subsidies

have MVPFs around 1.45. All other subsidies tend to have smaller MVPFs, with values around

1 ± 0.2. These results suggests the potential for meaningful welfare gains if climate spending is

focused on policies that displace the production of dirty electricity. For example, every dollar

of expanded spending on wind PTCs (with MVPFs above 5) financed by less spending on EV

subsidies (with MVPFs around 1.5) would deliver $3.50 in net benefits to society.

Robustness Appendix Tables 5–11 present the WTP and cost details for several alternative

specifications. In particular, Appendix Tables 5 and 6 consider alternative models of the social

cost of carbon corresponding to values of $76 (with a 2.5% discount rate) and $337 (with a

1.5% discount rate).31 Higher values of the SCC accentuate the patterns of MVPFs we observe,

but our core conclusions remain unchanged: wind PTCs have the highest MVPFs followed by

solar, EVs, and then other subsidies.32

Panel A of Appendix Figure 3 visualizes seven alternative specifications for the construction

of the MVPF, each reported separately for these three models of the SCC. First, the ex icons

(×) omit learning by doing benefits from the MVPF (see also Appendix Table 8). Without

learning by doing, the values for EVs fall from 1.45 to 0.96, and the values for residential solar

fall from 3.86 to 1.45. By contrast, even without learning by doing, subsidies for utility-scale

wind produce relatively high MVPFs, with a category average of 3.85.

Next, we consider how our MVPFs change under alternative electricity grids. The diamond

icons (♦) assume the US has the CA grid, which has the lowest CO2 emissions. The plus icons

(+) assume a grid corresponding to the Midwestern region of the US, which has the highest

CO2 emissions. Cleaner grids depress the MVPFs for wind and solar and slightly raise the

MVPFs for EVs. Despite those changes, we continue to find an MVPF of 3.2 for wind PTCs

under the CA grid. The MVPF for EVs increases to 1.53 in CA, but remains well below the

MVPFs for wind PTCs and residential solar. In addition to US grid specifications, we have also

considered robustness to the average European Union electricity grid (see Appendix Table 9).

This delivers MVPFs similar to the CA grid, with category average MVPFs for wind, residential

solar, and EVs of 3.84, 2.73, and 1.51, respectively.

30As a point of comparison, such estimates exceed estimates of the welfare cost of raising revenue through
the income tax, which tend to range from 1 to 2 (Hendren 2020, Kleven & Kreiner 2006) and expansion of tax
enforcement that has been estimated to be around 1.1-1.3 (Boning et al. 2023).

31Appendix Table 7 considers a much higher SCC of $1367 from Bilal & Känzig (2024), which delivers similar
orderings of policies but some policies with MVPFs near 1 now start to have MVPFs that exceed 2 (e.g.
weatherization, vehicle retirements).

32Our baseline specification uses an SCC that captures benefits accruing to individuals around the world.
Appendix Figure 4 shows, in blue bars, how the MVPF changes when only considering benefits to US residents
and ignoring the benefits to the rest of the world. While the relative ordering again remains unchanged, the
MVPF values decrease substantially. The wind and solar categories have MVPFs of 1.89 and 1.18 while other
categories are often below 1. This is because only 13.1% of the global externality benefits are estimated to flow
to US citizens and so the numerator of the MVPF falls in cases where the are meaningful global environmental
benefits.
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In Panel B of Appendix Figure 3, we consider how the MVPFs change if the electric grid

sourced more energy from non-emissive sources. Eventually, the benefits of Wind PTCs and

residential solar fall below EVs, but not until over 90% of the grid is sourced from renewable

energy. Under a perfectly clean grid with no local or global pollution, the MVPF for wind is

1.03 and the MVPF for residential solar is 1.37. This illustrates that if one were to achieve a

clean grid in the future, the value of subsidies to clean electricity production would diminish.

In contrast, the MVPF for EVs rises to 1.61. This is because, as noted in (Gillingham et al.

2025), the environmental harms from electricity diminish while the environmental damage from

gasoline, combined with learning by doing benefits of EV batteries, remains. The MVPF

approach could be used to track the decreasing returns to such subsidies as the grids follow the

transition to clean energy.

In addition to examining the effects of varying grid emissions, we also explore assumptions

about the structure of the electricity market. Our baseline specification uses estimates of supply

and demand curves for electricity consumption to estimate a rebound effect of 19.6%. The vee

icons (∨) double the magnitude of the electricity and natural gas rebound, while the hats

(∧) assume no rebound in these markets. Larger rebound effects lower the value of wind PTCs

slightly, as the MVPF falls from 5.87 to 4.99 when the rebound effect is doubled. But the broad

patterns are similar. Our baseline specification also calculates markups in the electricity market

and includes changes in profits as an additional WTP. The squares (■) show how assuming

competition and omitting firm profits affects the MVPF (see also Appendix Table 10). These

changes have minimal effects on the results.

Our baseline specification assumes that people are rational when purchasing energy-efficient

goods so that the energy savings they provide are not included as an additional benefit beyond

what is expressed via revealed preference. The triangles (▲) consider a specification that

assumes that people purchasing energy-efficient goods were not aware of (or not internalizing)

the energy savings they provide (see also Appendix Table 11). This generally increases the

benefits of energy-efficient subsidies, but the MVPFs continue to fall below those of policies

that directly displace dirty electricity production.

Lastly, our MVPF calculations for most goods envision a small (marginal) change in the

policy relative to 2020 subsidy levels. We can also use the framework to explore non-marginal

changes in subsidy levels. Appendix Figure 5 illustrates the MVPF of a non-marginal change

in EV subsidies. It examines the effect of increasing the federal subsidy to $7500, the amount

provided under the Inflation Reduction Act (IRA). The first dollar of the subsidy has an MVPF

of 1.30. As the subsidy increases, the MVPF falls slightly. This is because the fiscal externalities

are increasing in the size of the pre-existing subsidy. The MVPF on the 7500th dollar is 1.02.

Integrating over all the marginal policy changes yields an average (non-marginal) MVPF of

1.15. Similarly, we can consider the case of non-marginal residential solar subsidies, where the

IRA prevented the expiration of the subsidy and set the rate at 30%. Performing the same non-

marginal analysis, we obtain an MVPF of 4.43, which is relatively close to but slightly above
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our marginal category average of 3.86. We can repeat the same exercise for the wind PTC,

examining the effect of increasing the PTC from 0 to 2.6 cents per kWh, which is the change

implemented under the IRA. That policy change results in an MVPF of 5.80 as compared to

our baseline marginal MVPF estimate of 5.87. In sum, the MVPFs we observe for our marginal

policy experiments yield similar conclusions to the non-marginal policy changes and broadly

reinforce our primary conclusion about climate subsidies: those that directly displace the dirty

production of electricity have the highest MVPFs.

5 Nudges and Marketing

Next, we consider policies that employ nudges or marketing strategies to reduce residential

energy consumption. The Home Energy Report (HER) designed by Opower (now Oracle)

is perhaps the most well-studied environmental nudge. The HER provides information on

how to be more energy efficient in the home and often includes an element of social pressure

(e.g., comparisons of a household’s energy use with 100 similar neighbors). There have been

over 200 rigorous RCTs showing the causal impact of such nudges on energy demand in the

United States and around the world (Allcott 2011). Here, we show how to translate these

estimates of causal impacts into MVPFs of nudges. First, we use estimates from Allcott (2011)

of the national average treatment effect of HERs aimed at reducing electricity use. We then

consider the effects of nudges to reduce electricity use in different regions using 166 treatment

effect estimates obtained from Opower. Lastly, we discuss additional nudges designed to reduce

natural gas usage and other marketing policies designed to increase uptake of clean technologies.

We begin with the WTP for the Opower nudge. HERs targeting electricity usage cause a

reduction in consumption, which reduces both emissions and the profits of utility companies.

Combining these treatment effects with the externality from electricity production in the US, we

estimate that every $1 invested in these nudges leads to $3.87 in global environmental benefits

and $0.44 in local environmental benefits. These benefits are partially offset by rebound effects

of $0.76 and $0.09 due to the increased demand that results from reduced energy prices. We

also estimate that utility companies experience a decrease in profits of $0.24 for each $1 spent

on the Home Energy Report (HER) nudge.

In our baseline specification, we assume that people were optimizing their energy use so

that they do not place any additional value on private energy savings. We also assume that

the nudge does not generate costs or benefits from any value of shame or pride or value of

information from the nudges. We acknowledge, however, that these sources of WTP may be

important and assess the robustness to including such estimates below (Allcott & Kessler 2019,

Butera et al. 2022, List et al. 2023).33

33For example, Allcott & Kessler (2019) suggest that individuals would be willing to pay on average about
half (49%) of the energy savings that they experience from the nudge. As a conservative approach, Appendix
Table 11 presents the results when we add in 100% of the energy savings, and shows that our conclusions remain
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On the government cost side, we assume that the government pays for the electricity HER

and thus include administrative and logistical costs as a government cost.34 Government revenue

collected from utilities decreases by $0.13, but the long-run climate fiscal externality saves the

government $0.06. Combining the willingness to pay and government costs, we obtain an MVPF

of 3.01.

While this 3.01 estimate corresponds to an average electricity HER, the MVPF varies sharply

across regions of the US. Figure 5 illustrates the MVPF for HER nudges across five US regions

where field experiments have been conducted and evaluated. The Mid-Atlantic, Northwest,

and Midwest have high MVPFs with average values of 5.68, 5.50, and 3.76, respectively. By

contrast, in California and New England, the MVPFs are 0.52 and 0.24, respectively.35 The

key driver of these patterns is the relatively cleaner grid in New England and California, which

decreases the environmental benefits. In these areas, any environmental benefits are roughly

offset by the loss of profits to the utility companies.36,37 We also note the value of nudges

depends heavily on the global externalities from the grid, but the regional patterns we observe

are robust to those SCC variables. At an SCC of $76 rather than $193, the category average

MVPF falls from 3.01 to 1.34. In that case, regions with dirty grids have MVPFs in the 1.92

to 2.76 range while regions with cleaner grids have MVPFs near 0.

While we find large MVPFs for nudges to reduce electricity consumption, we find much

smaller MVPFs for nudges to reduce natural gas consumption with an average value of 0.45.

These lower MVPFs are driven by a combination of smaller treatment effects relative to elec-

tricity nudges (the average natural gas nudge reduces consumption by 0.14% while the average

electricity nudge reduces consumption by 0.26%) and the fact that the environmental bene-

fits of reduced natural gas consumption are smaller than the benefits of reducing electricity

consumption in areas with dirty grids.

We also analyze nudges specifically targeted to manage demand during peak periods. These

nudges can help avoid costly blackouts or expensive marginal generation caused by the intermit-

broadly similar.
34This appears to be a reasonable approximation of what happens in practice, but it is also true that energy

companies may pay for nudges. This means that we measure the MVPF of the nudge as if the government
were to enact the policy or pay utilities to enact the policy.

35It is possible that the effects of the nudge persist beyond the measured time periods in these studies.
However, the MVPFs for CA and New England remain at 0.72 and 0.36 even if we assume that half of the
treatment effects persist for two years after the nudge (Brandon et al. 2017, Allcott & Rogers 2014).

36Excluding the loss in firm profits, the MVPFs for CA and New England increase to 2.02 and 0.96, respec-
tively. They continue, however, to be substantially smaller than the MVPFs in the three regions with dirtier
grids: 5.81 (Mid-Atlantic), 5.50 (Northwest), 3.86 (Midwest). We note that this dependence of the welfare
effects on firm profits is similar to the argument in Buchanan (1969), who considers welfare with corrective
taxes under competition and monopoly.

37The Northwest is categorized as a dirty electric grid despite the substantial levels of hydroelectric power
in the region. This is due to both (i) the high level of marginal emissions estimated in the AVERT model
(as distinct from average emissions) and (ii) the nature of the regional aggregation used in the AVERT model
of marginal emissions. The northwest region includes states with very high levels of grid emissions, such as
Utah. Omitting the Northwest from our analysis does not change the broad trajectory of our findings regarding
regional variation in nudge MVPFs.
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tency of renewable energy sources. An example of such nudges is the peak energy report, which

informs consumers of their energy consumption during peak periods. Brandon et al. (2019) find

that these led to a 4% reduction in energy use during peak hours. Constructing the MVPF

requires placing a social value on this reduction in peak energy use. Here, we focus on the

extent to which the marginal cost of peak production exceeds the price. We consider marginal

costs ranging from ranging from $500 per MWh to $1000 per MWh (CAISO 2021) and find

associated MVPFs from 0.70 to 1.60. If the demand reduction succeeds in avoiding a blackout,

rather than simply avoiding the costly generation of electricity, these MVPF estimates could

rise as high as 5.30.38

In addition to energy reports, we study marketing strategies and information treatments

designed to encourage the adoption of clean technologies and reduce electricity usage. For

example, we examine the Solarize program that sought to increase residential solar installations

by providing municipalities with a designated solar installer, group pricing, and an information

campaign led by volunteer ambassadors. Translating estimates of the impact of this program

from Gillingham & Bollinger (2021), we estimate an MVPF of 1.81. These exceeds the MVPFs

of other marketing policies designed to encourage the adoption of weatherization technologies,

which have MVPFs near 1.

Summary of MVPFs for Nudges and Marketing Nudges to reduce electricity con-

sumption can yield high MVPFs — on average exceeding 1.5 in our 2020 baseline specification.

However, the effectiveness of these policies depends heavily on the cleanliness of the electric

grid. The MVPFs exceed 3 in areas with dirty grids and fall below 1 in areas with cleaner

grids such as California and New England. Nudges aimed at reducing natural gas consumption

have lower MVPFs than those targeting electricity consumption due to the smaller treatment

effects and lower environmental damages relative to electricity production. Finally, marketing

strategies can also yield modest MVPFs when targeting adoption of goods with particularly

high environmental benefits like residential solar. But these marketing policies tend to have

lower MVPFs than direct subsidies for the same goods.

6 Revenue Raisers

The classic solution to an environmental externality is to tax emissions or sources of emissions.

Such policies can reduce emissions while also raising government revenue. For revenue-raising

policies, the MVPF measures the welfare burden imposed on individuals per dollar of gov-

ernment revenue raised. This means that, all else equal, lower MVPFs correspond to better

methods of raising revenue. We focus here on the MVPF for two types of policies: taxes and

cap-and-trade.

38This calculation assumes a value of lost load (VOLL) of $4,300 per MWh (Brown & Muehlenbachs 2024).
We recognize the VOLL may vary across settings (Borenstein et al. 2023).
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6.1 Taxes

As a benchmark, lump-sum taxes that do not affect behavior have an MVPF of 1 because they

impose $1 in welfare cost per each dollar of revenue raised. More generally, the same equation

(5) that we used for subsidies characterizes the MVPF of a tax. Instead of thinking of τ as a

subsidy, suppose now that τ < 0 is a tax, and imagine that the environmental externality is a

damage from consumption of x, V < 0. From the perspective of a tax change, the numerator

of the MVPF reflects two countervailing forces. On the one hand, each dollar of tax imposes a

$1 of burden on the taxed individuals. On the other hand, the behavioral response to the tax

changes consumption of the taxed good, x, generating environmental gains that partially offset

the burden of the tax, (−ϵ)V
p
. That change in consumption is also reflected in the denominator

because changes in consumption affect tax revenue and diminish the net revenue raised from

the tax, −ϵ τ
p
. The MVPF is 1 if the tax is set at it’s Pigouvian level.39 If the tax is below

(above) the Pigouvian level, the MVPF of the tax will fall below (above) 1. In our empirical

implementation, we use an extended version of this formula that includes externalities from

imperfect competition and learning-by-doing effects (e.g., gas taxes induce the adoption of

EVs, generating learning by doing externalities).

We construct 12 MVPFs for gasoline taxes using estimates of the response of gasoline

consumption to price and tax changes. These estimates imply price elasticities that range from

-0.04 (Hughes et al. 2008) to -0.46 (Davis & Kilian 2011). Figure 6 illustrates the construction

of the baseline MVPF using the elasticity estimate of -0.33 from Small & Van Dender (2007).

A $1 increase in the gas tax leads to a WTP of consumers of $1 to avoid the tax increase, as

the literature tends to suggest full pass through of taxes to consumers (Marion & Muehlegger

2011). The reduced driving due to the tax leads to global environmental benefits of $0.27, local
pollution benefits of $0.03, and local benefits from reduced accidents and congestion of $0.21.

Higher consumer prices for gasoline can cause an increase in EV adoption (Bushnell et al.

2022). Motivated by this, we use Slutsky symmetry to quantify the potential impact of this

substitution on our MVPF estimates. We translate the own-price elasticity of EV purchases

of -2.1 (Muehlegger & Rapson 2022) into a cross-price elasticity between the price of gasoline

and EV demand of 0.22.40 The resulting benefits from EV purchases are, however, quite small.

We find that induced EV purchases generate $0.0008 in initial global and local damages from

electricity generation. They also generate learning-by-doing benefits of $0.002 from reduced

future EV prices and $0.0002 from future environmental benefits.41 Lastly, we estimate that

39With taxes or subsidies on other goods, the Pigouvian tax internalizes both the environmental and other
fiscal externalities.

40Under Slutksy symmetry, in combination with the assumption of no change in overall car demand (just
shifting between EVs and ICE vehicles), the cross-price elasticity is given by the own-price elasticity multiplied
by the ratio of the present discounted value of operating costs of a gasoline powered car relative to the price of
an EV. See Appendix E.10 for our derivation.

41We also account for utilities’ WTP for increased electricity usage by EVs as well as accompanying fiscal
externalities associated with EV adoption. These effects are negligible.
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gasoline producers are willing to pay $0.07 WTP to avoid the tax, due to reduction in gasoline

use. Summing, this implies a total WTP to avoid the tax of $0.56.

On the cost side, the reduction in demand also leads to lost corporate and gas tax revenue

of $0.09.42 The US government also gains $0.01 in future revenue via the climate externality.

Combining our WTPs and cost implies an MVPF of 0.60. A dollar of government revenue

raised leads to a welfare cost of $0.60 on individuals.

Figure 7 shows MVPFs of 0.44 to 0.95 for the other gas tax policies in our sample, with a

category average of 0.67. We find slightly higher MVPFs around 0.8 for taxes on diesel and

jet fuel, with detailed calculations in Appendix E.11.43 In each of these cases, the MVPF falls

below 1 because the externalities avoided (environmental, congestion, or accidents) are larger

than the fiscal externality induced by the policy.

On the whole, the results suggest that fuel taxes raise revenue at a relatively low welfare

cost. The MVPFs of these revenue raisers are well below the MVPF of changes to the income

tax, which range from 1 to 2 depending on the income level of the taxed individuals (Kleven

& Kreiner 2006, Hendren 2020, Hendren & Sprung-Keyser 2020). The MVPFs of fuel taxes

are even below 1, the MVPF of a non-distortionary lump sum tax. Returning to equation (2),

we can use the MVPFs to make statements about the welfare effects of budget-neutral policy

experiments. For example, we can directly compare an MVPF of .6 for gasoline taxes with an

MVPF of 1.1 for income taxes on low-income earners. If society places equal weight on the

individuals impacted by each policy, then every dollar of revenue shifted from income taxes

to gasoline taxes generates 50 cents in additional welfare (with 10 cents of this corresponding

to the “double-dividend” obtained by reducing distortions in the income tax schedule).44 If,

by contrast, a decision-maker would prefer the status quo, it implies they must place a higher

welfare weight on drivers relative to an average low-income individual.

6.2 Cap and Trade

Another common mechanism used to reduce carbon emissions is through a cap and trade

scheme. These systems impose quantity limits on emissions and let firms trade the rights to

such emissions. Our model setup can be used to evaluate cap-and-trade policy in much the

same way that it can evaluate a tax change. We let x denote the number of permits issued and

make a modification to introduce the notion of “leakage.” We assume that one fewer permit

leads to (1 − L) reductions in emissions, where L is the leakage of emissions into areas not

42Consistent with the findings in West & Williams (2007) that gasoline is a relative complement to leisure
rather than labor, we exclude any fiscal externalities from changes in labor income.

43Diesel taxes have a higher MVPF than gas taxes because diesel demand is less elastic than gasoline demand.
This increases the MVPF, despite the fact that diesel vehicles impose a larger per-gallon externality than gas-
powered vehicles. The jet fuel tax has a higher MVPF than gas taxes due to fewer local externalities.

44Even ignoring environmental benefits and focusing solely on accidents and congestion, gas taxes have an
MVPF of 0.95, which continues to be lower than the MVPFs identified for tax changes at any point across the
income distribution (Hendren 2020).
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captured by the cap-and-trade program. In the MVPF derivation, this changes the externality

per unit of x from −V to −(1 − L)V . Following equation (5), and multiplying by x dp
dx
, the

MVPF of changing the number of auctioned permits is

MV PF =
−x dp

dx
+ V (1− L)

−x dp
dx

− p
. (27)

The first term is the firms’ willingness to pay to avoid the increase in permit prices induced by

a reduction in permit supply. This is offset by the environmental damages avoided, V (1− L),

due to a one-unit change in the number of permits auctioned. On the cost side, the government

receives the mechanical revenue from the higher prices, −x dp
dx

> 0, but also loses p in revenue

from the forgone permit no longer auctioned. (p does not appear in the numerator due to the

envelope theorem: the marginal firm holding a permit has a marginal abatement cost equal to

the permit price.)

These derivations also illustrate that the MVPF in equation (27) is isomorphic to the MVPF

of a carbon tax. This interpretation requires: (i) the change in permit price that results from a

change in quantity of permits, dp/dx, must also reveal the (inverse) response that the economy

would experience from a change in price due to a carbon tax, dx/dp, and (ii) both instruments

generate similar spillovers across markets (i.e. similar leakage). Under these conditions, the

cap-and-trade MVPFs we estimate below also reveal the MVPF of a hypothetical carbon tax

in these settings.

There are two cap-and-trade policies that have been evaluated in the US: the Regional

Greenhouse Gas Initiative (RGGI) in the Northeast and mid-Atlantic, and the California Cap-

and-Trade Program. We also briefly discuss the European Emissions Trading System (ETS).

We begin with the in-context estimates of the effect of RGGI on greenhouse gas emissions

using results from Chan & Morrow (2019). Between 2009 and 2016, there were 816.2 million

permits auctioned (per short ton of CO2) at an average clearing price of $3.19 (in 2016 dollars).

The authors estimate that RGGI reduced 22 million short tons of CO2 during this period. This

implies that a one unit reduction in the quantity of permits sold led to a $1.45 × 10−7 dollar

increase in the permit price, or dp/dx = −1.45 × 10−7. To incorporate this into the MVPF

formula above, we assume that this abatement curve has a constant slope, so that this estimate

of dp/dx applies to the marginal permit issued.45 This suggests that if RGGI had auctioned one

fewer permit between 2009 and 2016, it would have lost $3.19 from the price of the permit but

45An alternative approach that does not necessarily require a linear abatement curve is to construct a non-
marginal valuation of the introduction of cap and trade. The 816.2 million permits auctioned at $3.19 gen-
erate revenue of $2.6B. That is also a welfare cost to the inframarginal firms who buy permits. In addition,
firms cut 22M short tons of CO2 emissions, which impose a welfare cost on them somewhere between 0 and
$3.19*22M=$70.18M, with the exact value depending on the shape of firm demand for emissions (half of this
would be a welfare loss if the abatement curve were linear). The reduction in emissions generates CO2 and
non-CO2 benefits of $1462M and $2578M, respectively. Regardless of the shape of the abatement curve, these
gains exceed the cost to firms, suggesting that the introduction of cap and trade delivered net gains to society
and revenue to taxpayers (i.e. MV PF < 0).
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gained approximately −dp/dx ∗ x = 1.45 ∗ 81.62 = $118.48 in additional revenue from higher

permit prices.46

Higher prices impose a cost of $118.48 on firms purchasing permits. Some firms choose

to reduce their emissions instead of purchasing a permit, but such firms are indifferent on

the margin to that change. Chan & Morrow (2019) also find evidence of significant leakage:

permitting one less short ton of CO2 emissions leads to 1 − L = 0.49 fewer short tons of CO2

actually emitted. Valuing this using the 2016 SCC implies that this reduction in CO2 emissions

has an environmental benefit of $65.20. Adding the reduction in local pollutants SO2 and NOX

yields an additional gain of $117.21. On net, these environmental benefits outweigh the cost to

firms, generating a net benefit of $63.93. Raising revenue via a reduction in auctioned permits

as part of RGGI led to a net win for individuals and taxpayers. The policy raises revenue

without imposing a welfare cost, so the MV PF < 0.

While our in-context estimates suggest RGGI led to significant benefits to taxpayers and

individuals in society, we caution that it is potentially difficult to extrapolate our in-context

estimates to a hypothetical 2020 policy reform. This is because one needs to know the marginal

abatement cost curve in 2020 to understand how the number of permits would affect its price.

If one assumes that the abatement curve is linear and stable over time, we find that greater

restrictions in auctioned permits would continue to increase government revenue ($123.01)
while also delivering a net gain to individuals in society. The WTP for environmental damages

($210.33) outweighs each dollar firms pay in permits ($127.78). However, the primary channel

through which RGGI affected emissions was by inducing a switch from coal to natural gas. It

is less clear whether the same set of low-cost substitution options continue to exist today, as

many coal plants have been retired. Consequently, it may be that dp/dx is larger in 2020 than

in the early 2010s, which leads to fewer environmental benefits per dollar of cost imposed on

those buying permits.

In addition to our analysis of RGGI, we also consider the MVPF of the introduction of

the California Cap-and-Trade Program using estimates from Hernandez-Cortes & Meng (2023).

They track outcomes for a 5% sub-sample of firms that are subject to the cap-and-trade system.

If we assume no response from the other 95% of firms, we find an MVPF of 0.941. However,

if the other 95% of firms have a similar response to the 5% of firms included in their sample,

the environmental gains outweigh the cost to firms of higher permit prices. This would suggest

that, like RGGI, the California Cap-and-Trade auctions raise revenue while also generating net

welfare gains to society, leading to a negative MVPF. We also find a similar result when using

estimates from Colmer et al. (2024) and Bayer & Aklin (2020) to study the introduction of the

European Union’s Emissions Trading System (ETS). Despite evidence of significant leakage,

estimates in both papers suggest that reductions in permits raise revenue while also providing

46We estimate a fiscal externality on the government budget from the impact of changes in CO2 emissions
to be $1.27, which suggests a net government revenue of $116.56 from issuing one fewer permit. Motivated by
the evidence in Colmer et al. (2024) and Metcalf & Stock (2023), we assume that cap and trade induces no
reduction in the productive capacity of firms, and so there is no additional corporate tax fiscal externality.
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positive benefits to society. More speculatively, exploiting the isomorphism between carbon

taxes and reduced permits in auction, this also suggests that carbon taxes can potentially

deliver government revenue at low or even negative net costs to society.

Summary of Revenue-Raiser MVPFs The key lesson of this section is that taxes and

other restrictions on pollution-emitting activities offer paths to raising revenues at low welfare

costs. The MVPFs of these policies fall consistently below 1, suggesting that they impose less

than $1 in burden for each dollar of revenue raised. This lies in contrast with other traditional

revenue raisers, such as increases in income tax rates, which consistently have MVPFs above 1.

Returning to equation (2), the results suggest that a decision-maker setting tax policy would

need to have high implicit social welfare weights on individuals engaged in pollution-emitting

activities in order to justify status quo policies as optimal. For cap and trade, the results show

that at the time these policies were implemented, there were large quantities of emissions that

could be reduced at relatively low cost. The presence of this low hanging fruit meant that

small prices on carbon generated a win for taxpayers and a net win for individuals affected by

the policy. More broadly, our results suggest that the presence of these large environmental

externalities creates opportunities for raising revenue at a low welfare cost relative to typical

methods of raising revenue.

7 International Policies

The impacts of greenhouse gas emissions are felt worldwide, regardless of the source of the

emissions. This means that many of the beneficiaries of US policies addressing climate change

reside outside of the US, and that US residents are the beneficiaries of climate policies enacted

in other countries.

In this section, we draw upon an illustrative set of climate-focused policies implemented

in developing countries, largely by NGOs. We consider: to what extent is it beneficial to US

residents to pay for policies implemented in other countries as a form of international aid. We

consider 14 policies in five categories: cookstoves, deforestation payments for ecosystem services,

payments to prevent rice field burning, wind subsidy offsets, and appliance and weatherization

rebates.

We begin with subsidies for improved cookstoves in Kenya. Berkouwer & Dean (2022)

find that small subsidies for these cookstoves help overcome credit constraints and encourage

the purchase of these appliances. When offered a $30.37 subsidy (in 2020 dollars), 54.5% of

individuals take up the cookstove. Almost all of those beneficiaries are marginal, as only 0.6%

would have taken up the cookstove in the absence of the policy. The paper also finds that

each new cookstove reduces CO2 by about 7 tons.47 This translates into $43.16 in global

47These calculations assume that charcoal is derived entirely from non-renewable biomass. If we were to use
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environmental benefits for each mechanical dollar of the subsidy. We combine those global

externality benefits with the transfer benefits of the subsidy and the value of private energy

savings. This yields a total willingness to pay of $50.82 for each mechanical dollar of the subsidy.

Next, we consider the net cost of the policy. In contrast to the policies considered up to this

point, the impact of this policy on carbon emissions is sufficiently large such that the climate

benefits can meaningfully affect future US tax revenue. In our baseline specification, $3.70 of

the $193 SCC falls onto the US government in the form of increased tax revenue from increased

future GDP.48 This means that the $30 upfront subsidy only costs the US government ≈ $4.

In other words, a mechanical dollar of subsidy ultimately costs the US government just $0.157.
When combined with the WTP for the policy, this yields an MVPF of 37 when only considering

benefits to US residents and an MVPF of 323 when considering benefits to individuals globally.

A key factor in this calculation is the extent to which reductions in global warming have

a positive impact on future US tax revenue (due to higher future productivity). Models that

report the same social cost of carbon can generate different MVPFs because they differ in their

incidence on the US federal budget. For example, we could have assumed that the entirety

of the SCC was driven by changes in market productivity. This approach is motivated by a

literature estimating damages functions that relate carbon to GDP (Nath et al. 2024). In this

case, we find that the subsidy pays for itself. The net cost of the policy is -$11.31 for each

dollar of mechanical subsidy (and the US-only MVPF is infinite). By contrast, other models

suggest that the incidence of emissions damages on the US taxpayer could be quite small. For

example, estimates from PAGE (Nordhaus 2017) suggest the US-incidence of carbon damages is

just 7%. Similarly, estimates from the GIVE model (Rennert et al. 2022) suggest that changes

in productivity are concentrated outside the US. If we drop the US-specific fiscal externality

to zero, the US-only MVPF falls to 4.91 and the MVPF including global benefits falls to

49.97. This highlights the importance of articulating incidence when constructing measures

of the social cost of carbon. Total damages estimates can be reported in GDP-equivalent

terms, but the distinction between the sources of damages can meaningfully impact the welfare

consequences of a policy.

Figure 8 presents the MVPFs for the other international policies in our baseline sample.49

MVPFs using only US benefits are shown in blue, and those including global benefits are shown

in orange. There is substantial variation in MVPFs both within and across program categories.

For example, the evidence from Berkouwer & Dean (2022) differs from the findings of previous

a fraction non-rewewable biomass of 45% estimated by the United Nations (2023), the carbon reduction would
be 1.67 tons.

48The precise value of that fiscal externality depends on the model underlying the social cost of carbon. In
our baseline specification, we assume the US experiences 15% of the benefits of carbon abatement in proportion
to its share of global GDP. Across SCC models these benefits are typically a mix of mortality reductions and
productivity increases. We therefore assume 50% of the benefits are changes in productivity and therefore taxed
by the US government at a rate of 25.5% (the US tax to GDP ratio in 2020).

49Table 1 discusses results for additional policies in our extended sample, which includes some policies that
are not a natural fit when considering hypothetical US-based funding. This includes, for example, nudges for
energy reduction in foreign countries.
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work on cookstove subsidies. Hanna et al. (2016) found that recipients simply did not use the

cookstoves, which translates to an MVPF near zero. Similarly, we find large variation in returns

to policies designed to prevent deforestation. We find that payments to farmers in Sierra Leone

to prevent deforestation yield an MVPF of 15.9 even when only considering the benefits to US

residents. However, not all deforestation programs are as effective. We find a smaller MVPF

for a program in Mexico evaluated in Izquierdo-Tort et al. (2024), with a global MVPF of 1.71

and a US-only MVPF of 0.1.

We also find large MVPFs for policies that use unique incentive contracts to discourage

rice field burning. We find MVPFs between 10-15 when including global benefits and in the

1.3-1.8 range when only including US benefits. Additionally, we find potentially high returns to

policies encouraging the adoption of wind turbines in India, with a global MVPF of 7.64 and a

US-only MVPF of 0.9.50 As is the case with our primary estimates, we find the lowest MVPFs

for policies that use rebates to encourage the purchase of efficient appliances.

In sum, we find potentially high returns - even from a US-only perspective - from policies

that invest in reducing greenhouse gas emissions in developing countries. In fact, subsidies for

cookstoves and deforestation subsidies in Sierra Leone have higher MVPFs than any domestic

subsidy in our sample, even when only considering the benefits accruing to US residents. That

being said, we reiterate three notes of caution. First, our exact MVPF estimates depend on

the incidence of the social costs of carbon and, in particular, whether the benefits accrue in the

form of increased US productivity. Such productivity benefits have US tax revenue implications

that meaningfully impact the net cost of the subsidies to the US government. Second, we find

high variance in our international MVPFs estimates, even within policy categories. Even when

spending within a promising category, high returns are certainly not guaranteed. Finally, our

analysis assumes the US government could implement these policies with the same cost structure

as the NGO conducting the evaluation. The US government may face different administrative

costs when scaling these programs. Ultimately, the key lesson from our analysis mirrors the

conclusions of Glennerster & Jayachandran (2023): International aid policies can be a valuable

part of the toolkit for addressing climate change.

8 MVPF Versus Cost per Ton

The preceding analysis applies the MVPF framework to analyze the welfare consequences of

US climate change policies. How do these lessons compare and contrast to what one would

learn from measures of cost per ton?

50We draw upon estimates from Calel et al. (2025) examining the impact of a wind subsidy in India on
greenhouse gas emissions. The authors argue that at least 52% of installations are inframarginal, suggesting
that the carbon offsets are not fully offsetting carbon emissions. We take that implied inframarginal fraction as
given, rather than a bound, and show that it results in an implied elasticity of -2.2 and an implied MVPF of
7.64. We note that the 52% inframarginal share is a lower bound so the ultimate MVPF could be lower if the
leakage is higher.
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In Section 2.3, we outlined three definitions of cost per ton, each of which conceptualizes

“cost” in a different manner. We discussed the theoretical advantages and potential drawbacks

of each approach. In this section, we examine each measure empirically. Table 2 reports all

three measures of cost per ton discussed in Section 8 for each policy subcategory alongside the

associated MVPF (see Appendix Table 12 for each individual policy in our sample).51

The results in Table 2 show that differences in the definition of “cost” matter in practice.

For example, appliance subsidies have cost-per-ton values that range from -$2 to $474. From

a resource cost perspective, energy-efficient appliances save enough energy to overcome the

difference in upfront price as compared to counterfactual appliances. This leads to a net resource

cost per ton of -$2. The government cost per ton, however, is $474, because many subsidies go

to people who would have purchased those appliances even in the absence of the subsidy.52

The wide variation in cost per ton across definitions within a policy category highlights the

need to be consistent when constructing a measure of cost per ton. For example, Gillingham

& Stock (2018) provides a ranking of policies according to their cost per ton of carbon abated.

The lowest cost per ton policy in their list is the nudges studied in Mullainathan & Allcott

(2010), who use a resource cost-per-ton measure—a measure that tends to be lower because

it includes energy savings and omits inframarginal costs.53 By contrast, solar subsidies are

reported to have higher costs per ton, but some of these measure the government cost per ton

(e.g., Gillingham & Tsvetanov (2019)).

Using the columns of Table 2, we can compare policy categories while maintaining a fixed

definition of cost. We see how each of these cost-per-ton definitions yield conclusions that differ

from the MVPF approach. We begin with the resource cost per ton.

Resource Cost per Ton (RCPT) There is large variation in the RCPT across categories,

even in cases where the MVPF values are quite similar. For example, energy-efficient appliances

have a negative resource cost per ton on average (-$2), which is well below the resource cost per

ton of vehicle retirement ($1,007) and hybrid vehicles ($577). From a resource cost perspective,

buying an energy-efficient appliance uses far fewer economic resources per ton of CO2 abated

relative to the replacement of an old car with a new car. From a social welfare perspective,

however, the MVPF of subsidies for these goods is close to 1 (1.16, 1.05 and 1.01). This

difference is due to two factors. First, the resource cost per ton does not include non-CO2

benefits. For example, resource cost per ton omits the consumption value of the new car when

51The estimates in Table 2 include learning-by-doing benefits; Appendix Table 13 shows the equivalent table
if we exclude these effects.

52The social cost per ton lies in between. It includes these inframarginal transfers as both a cost and benefit
and adds non-CO2 benefits like reductions in local pollutants. It excludes the value of energy savings due to
the envelope theorem.

53The paper describes its measure of costs as capturing the “long-run marginal cost of electricity minus the
program cost to the utility.”
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considering vehicle retirement.54 Second, resource cost per ton analyzes products as opposed

to policies. As shown in Section 2.3, the resource cost is independent of the price elasticity of

demand. In the case of appliance rebates, these policies are primarily transfers to individuals

who would have purchased the appliances anyway. That drives the MVPF toward 1 but is not

reflected in the RCPT.

Turning from category averages to individual policies in our sample, we see a similar pattern.

Appendix Table 12 shows that energy-efficient refrigerators have some of the lowest resource

costs per ton in our sample, ranging from -$298 to -$512. These values fall below the resource

costs per ton associated with wind turbines that range from -$96 to -$113. This particular

ordering between energy-efficient appliances and wind turbines echoes a key finding in the in-

fluential resource cost-per-ton calculations constructed by McKinsey & Company (Enkvist et al.

2007). The MVPF approach tells a different story. It shows that $1 of government spending

on subsidies for efficient fridges delivers between $1.01 and $1.04 in benefits to individuals per

dollar of government cost. This is much less than the $4.63-$7.55 in benefits per dollar spent

on subsidies for wind turbines.

Government Cost per Ton (GCPT) The government cost-per-ton approach considers the

fiscal cost of each ton of CO2 abated. Using this approach, we find that wind PTCs have the

lowest GCPT of any subsidy in our sample. We estimate that it costs the government $46 to

abate a ton of CO2. Residential solar subsidies have the second lowest GCPT of any subsidy

in our sample at $90 per ton. The relative superiority of wind and solar mirrors the findings

of the MVPF approach. That said, the GCPT approach omits the benefits of inframarginal

transfers and other non-CO2 benefits. This generates some differences relative to the MVPF.

For example, EVs have a GCPT of $1,356, substantially higher than the $474 cost for appliance

rebates, but a higher MVPF (1.45 versus 1.16). As noted above, 95% of the benefits of EV

subsidies are non-environmental, flowing to individuals who are buying or selling EVs. The

omission of those benefits increases the GCPT of EVs.

The omission of non-CO2 benefits also influences the ability to compare the GCPT to the

SCC. At first glance, one might think that an EV subsidy with a government cost of $1,356
per ton is not a worthwhile expenditure if the SCC is $193 per ton (because 1356 exceeds 193).

However, the existence of non-CO2 benefits means that we cannot readily compare their GCPT

to the SCC and draw conclusions about the social welfare impact of such a subsidy.

The GCPT is also not well suited to examine revenue-raising policies. For example, the

GCPT of fuel taxes is the lowest of any policy in our sample, at -$995. A decision-maker

focused on reducing CO2 at the lowest cost to the government without any consideration for

the welfare impact of a policy would generally find taxes appealing. When evaluating the welfare

54The omission of non-CO2 benefits and costs is most clearly seen in the negative value of 104 for gas taxes.
Gas taxes reduce gasoline consumption and thus reduce resource usage. But, they impose a welfare cost on the
taxed individuals that is excluded from the resource cost.
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impact of taxes, however, the key consideration is how the burden of the taxes on individuals

compares to the revenue raised (and the externalities avoided). The GCPT omits the burden

of those taxes.

Social Cost per Ton (SCPT) The final column of Table 2 reports the SCPT of each policy

category. As described in Section 2.3, the social cost is equal to the government cost minus all

(non-CO2) benefits of the policy.

We find negative SCPTs for residential solar (-$67) and wind PTCs (-$32), indicating these

policies can both abate carbon and provide net non-CO2 benefits to society. The superiority

of these two policies aligns with the conclusions of the MVPF approach. However, we also find

low SCPTs for EVs (-$415) and HEVs (-$38). This contrasts with the MVPF results of 1.45

for EVs and 1.01 for HEVs, which fall well below the MVPFs for wind and residential solar.

The reason for this difference in orderings stems from the difference in objective functions

associated with the SCPT versus MVPF metrics. Recall that the MVPF provides guidance to

a decision-maker seeking to maximize social welfare subject to a government budget constraint,

while the SCPT approach aims to achieve a particular CO2 reduction at the lowest social cost.

This means that the SCPT holds fixed the tons of carbon abated when comparing policies. As

seen in the GCPT estimates, using EV subsidies to abate a ton of carbon costs the government

$1,356. In contrast, abating a ton of carbon costs the government just $46 through a wind PTC.

So, the SCPT of -$415 for EVs tells us that if the government spent $1,356 on EV subsidies

it could reduce 1 ton of carbon and generate $415 in additional social benefits. This $415
exceeds the $32 in additional net benefits created from abating a ton of carbon through the

wind policy. But, if the government instead spent an equal amount ($1,356) on Wind PTCs, it

would abate 29.5 tons of carbon (1356/46 = 29.5) and generate additional net benefits of $943
(32∗1356/46 = 943). Those benefits far exceed those generated from EVs. The MVPF captures

these higher returns per dollar of government expenditure. The SCPT implicitly compares a

policy that spends $1,356 on EV subsidies to a policy that spends $46 on wind PTCs.

This example also highlights another potential consideration when measuring social cost: the

government may face an additional welfare cost of raising revenue. In its canonical formulation,

the SCPT statistic does not account for the welfare cost of raising revenue. As we noted in

Section 2.3, a potential way to account for this within the SCPT approach is to include the

welfare cost associated with raising government revenue, most commonly conceptualized as an

increase in the linear income tax rate. Appendix Table 14 reports the SCPTs associated with

assuming that the policy is financed by an income tax increase that has an MVPF of 1.1, 1.3,

and 1.5, respectively.

The key takeaway from this analysis is that the SCPT can be quite sensitive to the welfare

cost of raising revenue, especially for policies with large inframarginal transfers. The SCPT

of EV policies ranges from -$259 to $260 as the cost of raising revenue changes. If raising

revenue imposes a welfare burden of $1.10 per dollar, then using EV subsidies to remove 1 ton
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of carbon would lead to a $259 benefit to society. By contrast, if raising revenue imposes a

welfare burden of $1.50 per dollar, then abating a ton of carbon through an EV subsidy costs

society $260. These adjustments also lead to similarly large changes in the SCPT for appliance

rebates. Without any welfare cost of raising revenue, the SCPT is $111, but this rises to $349
when ϕ = 1.5.

When calculating the welfare cost of raising revenue, previous literature has argued that

there is no one-size-fits-all value of ϕ. Even focusing exclusively on changes in the income tax

schedule does yield a single marginal cost of raising revenue, as noted in Section 8. Rather, the

marginal cost depends on who you raise the revenue from: there are generally low welfare costs

(e.g. ϕ < 1) when raising money from low-income individuals and higher welfare costs (e.g. ϕ

exceeding 2 or 3) when raising money from high-income individuals, even if the elasticity of

taxable income is constant across the income distribution (Kleven & Kreiner 2006, Jacobs et al.

2017, Hendren 2020).

A key feature of the MVPF is that it does not embed an assumption about how the budget

constraint is closed. The MVPF of a spending policy measures the welfare effects of that

spending and the MVPF of a revenue raiser reflects the welfare cost of that policy. A decision-

maker can therefore use the MVPF to choose from a menu of spending and revenue-raising

policies to construct their preferred budget-neutral policy. For example, one can evaluate the

welfare effects of a wind subsidy financed by an increase in the gas tax. If the beneficiaries of

these policies have similar social welfare weights, the comparison of the 5.87 for wind PTCs to

the 0.67 for gas taxes suggests that every $1 of government revenue raised from a gas tax and

spent on wind PTCs generates $5.20 (=5.87-0.67) in benefits to individuals in society. Such a

calculation requires an estimate of the SCC but avoids assumptions about the welfare cost of

changes to the income tax schedule.

9 Conclusion

We conduct a comprehensive assessment of tax and expenditure policies that impact CO2 emis-

sions and have been rigorously evaluated using experimental and quasi-experimental methods.

We draw three main lessons: First, subsidies for investments that directly displace the dirty

production of electricity, such as production tax credits for wind power and subsidies for res-

idential solar panels, have higher MVPFs (generally exceeding 3), than all other subsidies in

our sample (with MVPFs generally around 1). Second, nudges to reduce energy consumption

have large MVPFs, often exceeding 5, when targeted to regions of the US with a dirty electric

grid. By contrast, nudges targeted toward areas with cleaner grids such as California and the

Northeast have substantially smaller MVPFs (often below 1). Third, fuel taxes and cap-and-

trade policies are highly efficient means of raising revenue (with MVPFs below 0.7) due to the

presence of large environmental externalities. We also note that some of the highest MVPFs

in our sample are international subsidies. These policies can produce high returns, even when
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only considering benefits to US residents and the incidence on US taxpayers.55

Methodologically, our approach integrates learning-by-doing externalities directly into our

welfare analysis. Learning-by-doing effects have only modest impacts on the desirability of wind

subsidies; however, the desirability of residential solar policies (and to some extent EV subsidies)

depends heavily on the potential for learning-by-doing spillovers. We hope our framework is

useful in future work analyzing subsidies for newer technologies such as carbon capture.

Alongside our MVPF calculations, we also compare and contrast these results with those

obtained from more common cost per ton of CO2 measures used in the literature. We first

highlight the importance of being clear about the definition of ‘cost’ when measuring cost per

ton, as the values differ depending on whether one talks about a resource cost, government cost,

or social cost per ton. We also show that the key lessons from the MVPF analysis – especially

that wind PTCs have higher welfare benefits per dollar of government spending compared to

EV subsidies – would have been difficult to glean from cost-per-ton metrics alone.

The MVPF approach also facilitates comparisons across policy domains. The high MVPF

values we find for spending on renewable energy generation exceeds the MVPFs found for many

areas of spending on US adults documented in (Hendren & Sprung-Keyser 2020) and the Policy

Impacts Library. The values rival, but are slightly less than, the MVPFs for spending on health

and education for low-income children. By comparison, the MVPFs of climate-focused revenue

raisers are far below the MVPFs of nearly all other policies studied in Hendren & Sprung-Keyser

(2020) and common revenue raisers such as increasing tax rates or increasing tax enforcement

(Boning et al. 2023). This suggests that climate policies present a unique opportunity to raise

revenue comparatively a lower welfare cost.

We can also use the MVPF framework to examine whether historical environmental policy

in the US has prioritized spending in areas with high returns. For example, we can compare the

allocation of funds under the American Recovery and Reinvestment Act (ARRA) of 2009 with

the allocation of funds under the Inflation Reduction Act (IRA) of 2022. The ARRA spent 3

times more on clean energy than on energy efficiency. By contrast, the IRA spent 9.4 times

more on clean energy than energy efficiency. This represents a substantial relative reallocation,

with far greater focus on spending in categories with higher MVPFs.56 It is important to note,

however, we also see a reallocation over time toward greater relative spending on EV subsidies,

an area with comparatively lower returns. IRA funding on EVs exceeded its direct funding for

clean energy while the ARRA spending on EVs was less than half its spending on clean energy.

In the end, we believe that the MVPF framework and the valuation methods used herein can

serve as a useful tool for the analysis of climate policy. All of our code is available on GitHub.

We hope this serves as an aid to researchers constructing their own future policy analyses.

55We note that such policies appear to have highly variable returns, and the incidence on climate damages on
the US government remains uncertain. Nonetheless, the math suggests these types of policies have the potential
to unlock large welfare gains.

56Details of this calculation can be found in Appendix J.
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FIGURE 1: Electric Vehicle Subsidy

Baseline Estimates from Muehlegger and Rapson (2022)
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Notes: This figure presents the components of willingness to pay and net government cost for the EV subsi-
dies in the California Enhanced Modernization Program (CEFMP) using the -2.1 price elasticity estimated in
Muehlegger & Rapson (2022). We present estimates for our baseline specification that envisions a change to the
federal 2020 subsidy. Each component is normalized relative to $1 of mechanical cost of the policy change. The
first two bars show how this transfer is passed through to consumers and car dealers. The next three bars report
the environmental externalities, including the global (GHG) externalities, local (e.g. PM2.5) externalities, and
rebound effects from higher prices in the electricity market. The next two bars report learning-by-doing exter-
nalities from both future environmental benefits (DE) and lower prices (DP ) using the approach in Theorem 1
and Appendix B. The last two columns report impacts on producer profits due to markups in the oil/gasoline
and utility sectors. The Cost components start with the mechanical cost of the $1 subsidy, then add the impact
of the behavioral response on the cost of state and federal subsidies using national average subsidies in 2020,
followed by the impact on changes in revenue from the gas tax and corporate profits taxes on oil/gasoline
producers and utilities. Lastly, the climate FE term captures future tax revenue due to the impact of lower
emissions today on future productivity. All numbers are calculated using our baseline path for the social cost
of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 2: Utility-Scale Wind Subsidies & Production Tax Credits

A. Baseline Estimates from Hitaj (2013)
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B. Baseline MVPFs by Price Elasticity
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Notes: This figure illustrates the MVPF measurement for wind subsidies. Panel A shows the WTP and Cost
components for the baseline specification for the wind production tax credit using a supply elasticity of 1.4
estimated in Hitaj (2013). The WTP components consist of the transfer (yellow), environmental externality
(light blue), and learning by doing effects (dark blue). The subsidy cost is calculated using the wind PTC in
2020 of $0.015 per KWh. Panel B shows how the MVPF varies with the elasticity of wind turbine installation
with respect to the price paid to suppliers for wind energy. We place solid vertical lines at the US estimates of
the elasticities in our main sample and dotted vertical lines for international estimates in our extended sample.
All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount
rate.
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FIGURE 3: Residential Solar Subsidies

A. Baseline Estimates from Pless and Van Bentham (2019)
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B. Baseline MVPFs by Price Elasticity
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Notes: This figure illustrates the MVPF measurement for residential solar subsidies. Panel A shows the WTP
and Cost components for our baseline specification for the California Solar Initiative using a demand elasticity
of -1.14 estimated in Pless & van Benthem (2019). The WTP components consists of the transfer (yellow),
environmental externality (light blue), learning by doing effects (dark blue), and utility profit loss (orange).
The subsidy cost is calculated using the 26% investment tax credit for residential solar installations. Panel B
shows how the MVPF varies with the elasticity of demand for residential solar panel capacity with respect to
the price of residential solar panels. The MVPF with learning by doing is not shown above 7.5 for illustrative
purposes. The solid lines represent the estimates of the elasticity in our sample. All numbers are calculated
using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 4: Baseline MVPFs for Subsidies
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Notes: This figure shows the 2020 baseline MVPF estimates for all categorized subsidy policies in our main
sample. We cap estimates at 5 with + signs indicating MVPFs above 5. The category average (shown by the
black vertical lines) reports the MVPF associated with a conceptual experiment where $1 in initial program
cost is split equally across each policy in the category, so that we take the average willingness to pay relative to
the average net government cost within each category. The blue shading presents bootstrapped 95% confidence
intervals for each category average MVPF, restricting to underlying estimates for which we have sampling
uncertainty. See Appendix Table 1 for the full policy name and source to each label reference. See Appendix
Table 3 for comparisons of the category averages on this subsample. All numbers are calculated using our
baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 5: Baseline MVPF of Home Energy Reports
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Notes: This figure illustrates the MVPF estimates for Opower Home Energy Reports split across the 5 AVERT
model’s electricity regions for which the experiments have been conducted. The benefits per dollar of government
cost equal the environmental benefits minus the loss in utility profits. MVPFs above five are censored and the
category averages are written to the right of each category. All numbers are calculated using our baseline path
for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 6: MVPF of a Gasoline Tax

Baseline Estimates from Small & Van Dender (2007)

0.555

1.000 -0.272

-0.033
-0.209

-0.000 -0.002

0.071 -0.000

1.000 -0.087

-0.000 0.005 0.918

0.2

0.4

0.6

0.8

Consumers Global
Env

Local
Env

Driving Dynamic
Env

Dynamic
Price

Gasoline
Producers

Utilities Total
WTP

Program
Cost

Taxes Subsidies Climate
FE

Govt
Cost

1.0
MVPF = 0.60

0.0

Notes: This figure presents the components of the baseline MVPF for the gasoline tax using a gasoline price
elasticity of -0.334 from Small & Van Dender (2007). The WTP components include the transfer cost (yellow),
global greenhouse gas benefits and local environmental externalities arising from accidents, congestion, and
local pollutants (light blue), learning by doing benefits from increased EV purchases (bars not visible), and
gasoline/electricity producer profits (orange). The tax cost arises from the impact of the response to the tax on
gas tax revenue using the 2020 tax of $0.46 per gallon. All numbers are calculated using our baseline path for
the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 7: Baseline MVPFs of Revenue Raisers
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Notes: This figure illustrates the MVPF for revenue raisers in our sample. Note that the MVPF measures the
welfare cost per dollar of revenue raised (or, equivalently, the welfare gain per dollar of net expenditures on tax
cuts). We illustrate each MVPF relative to the MVPF of a non-distortionary lump sum tax of 1. The black lines
are the category averages and the blue regions indicate the 95% confidence intervals computed via bootstrap.
See Appendix Table 1 for the full policy name and source to each label reference. All numbers are calculated
using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.

54



FIGURE 8: Baseline MVPFs of International Policies
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Notes: This figure illustrates the 2020 baseline MVPF estimates for US spending on international policies. The
denominator is net cost to the US government and the numerator is the sum of US and non-US WTP for the
subsidy. We cap estimates at 5 with + signs indicating MVPFs above 5. The blue bars represent the MVPF
only including US beneficiaries and the orange bars illustrate how the MVPF increases if one includes benefits
to non-US residents. See Appendix Table 1 for the full policy name and source to each label reference. All
numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount
rate.
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Table 1: Baseline MVPF Components

Full Version

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 1.900 0.645 0.000 7.793 1.000 0.435 -0.108 1.328 5.870
PTC (Shrimali) 1.000 5.865 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
PTC (Metcalf) 1.000 4.368 0.601 -1.002 1.427 0.560 0.000 6.953 1.000 0.407 -0.094 1.312 5.298
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.998 0.455 0.000 5.904 1.000 0.354 -0.078 1.276 4.626
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 4.841 1.170 0.000 13.030 1.000 0.617 -0.193 1.424 9.148
FIT (Spain) * 1.000 5.866 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 2.844 0.844 0.000 9.768 1.000 0.521 -0.140 1.381 7.072
FIT (France) * 1.000 4.837 0.665 -1.110 1.877 0.658 0.000 7.926 1.000 0.450 -0.110 1.340 5.913
FIT (UK) * 1.000 2.006 0.276 -0.460 0.223 0.199 0.000 3.243 1.000 0.187 -0.035 1.151 2.817
FIT (EU) * 1.000 0.546 0.075 -0.125 0.016 0.050 0.000 1.561 1.000 0.051 -0.009 1.042 1.498

Residential Solar 1.106 1.718 0.252 -0.421 2.280 1.636 -0.214 6.356 1.000 0.714 -0.068 1.646 3.862
CSI 1.000 4.299 0.631 -1.054 4.988 3.987 -0.535 13.316 1.000 1.787 -0.157 2.630 5.063
NE Solar 1.000 1.220 0.179 -0.299 3.132 1.610 -0.152 6.690 1.000 0.507 -0.076 1.431 4.676
CSI (TPO) 1.528 1.604 0.235 -0.393 1.982 1.371 -0.200 6.128 1.000 0.667 -0.061 1.606 3.815
CSI (HO) 1.000 0.932 0.137 -0.228 1.081 0.864 -0.116 3.670 1.000 0.387 -0.034 1.353 2.712
CT Solar 1.000 0.533 0.078 -0.131 0.216 0.346 -0.066 1.976 1.000 0.222 -0.012 1.209 1.634
ITC * 1.000 1.152 0.169 -0.282 3.825 1.944 -0.143 7.664 1.000 0.531 -0.088 1.443 5.312

Electric Vehicles 1.000 0.057 0.000 0.032 0.073 0.452 -0.043 1.571 1.000 0.092 -0.004 1.087 1.445
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.103 0.564 -0.051 1.722 1.000 0.108 -0.006 1.103 1.561
ITC (EV) 1.000 0.061 0.000 0.034 0.078 0.482 -0.046 1.609 1.000 0.097 -0.005 1.092 1.474
EFMP 1.000 0.042 0.000 0.023 0.040 0.309 -0.031 1.383 1.000 0.070 -0.003 1.067 1.296
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.036 0.961 1.000 -0.076 0.003 0.927 1.037

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 -0.103 1.215 1.000 0.052 -0.009 1.044 1.164
C4A (CW) 0.952 0.550 0.083 -0.124 0.000 0.000 -0.039 1.423 1.000 0.021 -0.009 1.012 1.405
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 -0.659 1.445 1.000 0.112 -0.033 1.078 1.340
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 -0.072 1.722 1.000 0.328 -0.014 1.315 1.310
C4A (DW) 0.929 0.243 0.037 -0.055 0.000 0.000 -0.017 1.138 1.000 0.009 -0.004 1.005 1.132
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.019 0.813 1.000 -0.231 0.003 0.772 1.053
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 -0.007 1.044 1.000 0.004 -0.002 1.002 1.042
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 -0.017 1.167 1.000 0.157 -0.003 1.154 1.011
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 -0.034 0.968 1.000 0.018 -0.008 1.010 0.958

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 -0.049 1.106 1.000 0.060 -0.004 1.056 1.047
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 -0.074 1.157 1.000 0.091 -0.006 1.084 1.067
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 -0.049 1.102 1.000 0.060 -0.004 1.055 1.044
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 -0.025 1.059 1.000 0.031 -0.003 1.028 1.030

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 1.900 0.645 0.000 7.793 1.000 0.435 -0.108 1.328 5.870
PTC (Shrimali) 1.000 5.865 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
PTC (Metcalf) 1.000 4.368 0.601 -1.002 1.427 0.560 0.000 6.953 1.000 0.407 -0.094 1.312 5.298
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.998 0.455 0.000 5.904 1.000 0.354 -0.078 1.276 4.626
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 4.841 1.170 0.000 13.030 1.000 0.617 -0.193 1.424 9.148
FIT (Spain) * 1.000 5.866 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 2.844 0.844 0.000 9.768 1.000 0.521 -0.140 1.381 7.072
FIT (France) * 1.000 4.837 0.665 -1.110 1.877 0.658 0.000 7.926 1.000 0.450 -0.110 1.340 5.913
FIT (UK) * 1.000 2.006 0.276 -0.460 0.223 0.199 0.000 3.243 1.000 0.187 -0.035 1.151 2.817
FIT (EU) * 1.000 0.546 0.075 -0.125 0.016 0.050 0.000 1.561 1.000 0.051 -0.009 1.042 1.498

Residential Solar 1.106 1.718 0.252 -0.421 2.280 1.636 -0.214 6.356 1.000 0.714 -0.068 1.646 3.862
CSI 1.000 4.299 0.631 -1.054 4.988 3.987 -0.535 13.316 1.000 1.787 -0.157 2.630 5.063
NE Solar 1.000 1.220 0.179 -0.299 3.132 1.610 -0.152 6.690 1.000 0.507 -0.076 1.431 4.676
CSI (TPO) 1.528 1.604 0.235 -0.393 1.982 1.371 -0.200 6.128 1.000 0.667 -0.061 1.606 3.815
CSI (HO) 1.000 0.932 0.137 -0.228 1.081 0.864 -0.116 3.670 1.000 0.387 -0.034 1.353 2.712
CT Solar 1.000 0.533 0.078 -0.131 0.216 0.346 -0.066 1.976 1.000 0.222 -0.012 1.209 1.634
ITC * 1.000 1.152 0.169 -0.282 3.825 1.944 -0.143 7.664 1.000 0.531 -0.088 1.443 5.312

Electric Vehicles 1.000 0.057 0.000 0.032 0.073 0.452 -0.043 1.571 1.000 0.092 -0.004 1.087 1.445
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.103 0.564 -0.051 1.722 1.000 0.108 -0.006 1.103 1.561
ITC (EV) 1.000 0.061 0.000 0.034 0.078 0.482 -0.046 1.609 1.000 0.097 -0.005 1.092 1.474
EFMP 1.000 0.042 0.000 0.023 0.040 0.309 -0.031 1.383 1.000 0.070 -0.003 1.067 1.296
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.036 0.961 1.000 -0.076 0.003 0.927 1.037

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 -0.103 1.215 1.000 0.052 -0.009 1.044 1.164
C4A (CW) 0.952 0.550 0.083 -0.124 0.000 0.000 -0.039 1.423 1.000 0.021 -0.009 1.012 1.405
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 -0.659 1.445 1.000 0.112 -0.033 1.078 1.340
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 -0.072 1.722 1.000 0.328 -0.014 1.315 1.310
C4A (DW) 0.929 0.243 0.037 -0.055 0.000 0.000 -0.017 1.138 1.000 0.009 -0.004 1.005 1.132
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.019 0.813 1.000 -0.231 0.003 0.772 1.053
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 -0.007 1.044 1.000 0.004 -0.002 1.002 1.042
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 -0.017 1.167 1.000 0.157 -0.003 1.154 1.011
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 -0.034 0.968 1.000 0.018 -0.008 1.010 0.958

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 -0.049 1.106 1.000 0.060 -0.004 1.056 1.047
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 -0.074 1.157 1.000 0.091 -0.006 1.084 1.067
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 -0.049 1.102 1.000 0.060 -0.004 1.055 1.044
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 -0.025 1.059 1.000 0.031 -0.003 1.028 1.030

Hybrid Vehicles 1.000 0.031 0.003 -0.026 0.000 0.014 -0.006 1.016 1.000 0.004 -0.001 1.004 1.012
HY (S-STW) 1.000 0.069 0.007 -0.058 0.001 0.031 -0.014 1.036 1.000 0.010 -0.002 1.008 1.027
HY (F-ITC) 1.000 0.020 0.002 -0.017 0.000 0.009 -0.004 1.010 1.000 0.003 0.000 1.002 1.008
HY (S-ITC) 1.000 0.004 0.000 -0.004 0.000 0.002 -0.001 1.002 1.000 0.001 0.000 1.001 1.002

Weatherization 0.774 0.297 0.029 -0.057 0.000 0.000 -0.054 0.989 1.000 0.017 -0.005 1.012 0.978
EPP 0.750 0.593 0.083 -0.133 0.000 0.000 -0.057 1.237 1.000 0.031 -0.009 1.022 1.210
IHWAP 0.750 0.404 0.019 -0.064 0.000 0.000 -0.111 0.999 1.000 0.025 -0.007 1.019 0.980
WI RF 0.870 0.052 0.011 -0.012 0.000 0.000 -0.001 0.920 1.000 0.001 -0.001 1.000 0.920
WAP 0.750 0.297 0.013 -0.045 0.000 0.000 -0.088 0.927 1.000 0.018 -0.005 1.013 0.915
LEEP+ 0.750 0.138 0.019 -0.031 0.000 0.000 -0.013 0.864 1.000 0.007 -0.002 1.005 0.859

Other Subsidies 0.887 1.504 0.424 -0.234 0.000 0.000 -0.065 2.517 1.000 0.036 -0.025 1.010 2.492
CA 20/20 0.882 2.090 0.297 -0.468 0.000 0.000 -0.131 2.671 1.000 0.071 -0.033 1.038 2.572
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 2.074 0.218 -0.416 0.000 0.000 -0.030 1.846 1.000 -0.018 -0.033 0.949 1.945
HER (17 RCTs) 0.000 3.872 0.439 -0.844 0.000 0.000 -0.244 3.222 1.000 0.133 -0.061 1.072 3.006
Opower Elec. (166 RCTs) 0.000 3.246 0.368 -0.708 0.000 0.000 -0.205 2.701 1.000 0.111 -0.051 1.060 2.548
PER 0.000 0.230 0.064 0.000 0.000 0.000 0.695 0.989 1.000 -0.378 -0.004 0.618 1.600
Opower Nat. Gas (52 RCTs) 0.000 0.950 0.000 -0.112 0.000 0.000 -0.367 0.472 1.000 0.062 -0.016 1.046 0.451

Other Nudges 0.507 4.799 0.613 -1.061 0.000 0.000 -0.659 4.199 1.000 2.243 -0.076 3.167 1.326
Audit Nudge 0.000 8.678 1.333 -1.961 0.000 0.000 -0.542 7.507 1.000 2.683 -0.136 3.547 2.117
Solarize 1.145 15.001 2.200 -3.678 0.000 0.000 -1.844 12.824 1.000 6.320 -0.230 7.091 1.809
ES (WH) + Nudge 0.416 1.630 0.000 -0.192 0.000 0.000 -0.629 1.225 1.000 0.107 -0.032 1.075 1.140
IHWAP + Nudge (H) 0.739 0.517 0.019 -0.085 0.000 0.000 -0.105 1.085 1.000 0.023 -0.008 1.015 1.069
IHWAP + Nudge (L) 0.743 0.500 0.018 -0.082 0.000 0.000 -0.101 1.078 1.000 0.022 -0.008 1.014 1.062
WAP + Nudge 0.000 2.467 0.107 -0.371 0.000 0.000 -0.732 1.471 1.000 4.300 -0.041 5.259 0.280
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.229 -0.204 0.000 0.000 -0.002 0.060 0.625 1.000 -0.074 0.004 0.931 0.671
Gas (DK) 1.000 -0.374 -0.333 0.000 0.000 -0.002 0.098 0.388 1.000 -0.120 0.007 0.887 0.437
Gas (Su) 1.000 -0.323 -0.288 0.000 0.000 -0.002 0.084 0.472 1.000 -0.104 0.006 0.903 0.523
Gas (Coglianese) 1.000 -0.299 -0.267 0.000 0.000 -0.002 0.078 0.510 1.000 -0.096 0.006 0.910 0.561
Gas (Manzan) 1.000 -0.289 -0.257 0.000 0.000 -0.002 0.075 0.527 1.000 -0.093 0.006 0.913 0.578
Gas (Small) 1.000 -0.272 -0.242 0.000 0.000 -0.002 0.071 0.555 1.000 -0.087 0.005 0.918 0.605
Gas (Li) 1.000 -0.263 -0.234 0.000 0.000 -0.002 0.069 0.570 1.000 -0.084 0.005 0.921 0.619
Gas (Levin) 1.000 -0.240 -0.214 0.000 0.000 -0.002 0.063 0.607 1.000 -0.077 0.005 0.928 0.654
Gas (Sentenac-Chemin) 1.000 -0.228 -0.203 0.000 0.000 -0.002 0.060 0.627 1.000 -0.073 0.004 0.931 0.673
Gas (Kilian) 1.000 -0.161 -0.143 0.000 0.000 -0.002 0.042 0.736 1.000 -0.052 0.003 0.951 0.773
Gas (Gelman) 1.000 -0.133 -0.119 0.000 0.000 -0.002 0.035 0.781 1.000 -0.043 0.003 0.960 0.814
Gas (Park) 1.000 -0.130 -0.116 0.000 0.000 -0.002 0.034 0.786 1.000 -0.042 0.003 0.961 0.818
Gas (Hughes) 1.000 -0.034 -0.030 0.000 0.000 -0.002 0.009 0.943 1.000 -0.011 0.001 0.990 0.953
Gas (West) * 1.000 -0.373 -0.332 0.000 0.000 -0.002 0.097 0.391 1.000 -0.120 0.007 0.888 0.440
Gas (Tiezzi) * 1.000 -0.354 -0.315 0.000 0.000 -0.002 0.093 0.421 1.000 -0.114 0.007 0.893 0.472
Gas (Bento) * 1.000 -0.285 -0.254 0.000 0.000 -0.002 0.074 0.534 1.000 -0.091 0.006 0.914 0.584
Gas (Hughes - Ext) * 1.000 -0.272 -0.243 0.000 0.000 -0.002 0.071 0.554 1.000 -0.088 0.005 0.918 0.604
Gas (Kilian - Ext) * 1.000 -0.255 -0.227 0.000 0.000 -0.002 0.067 0.582 1.000 -0.082 0.005 0.923 0.630
Gas (Small - Ext) * 1.000 -0.054 -0.048 0.000 0.000 -0.002 0.014 0.910 1.000 -0.018 0.001 0.984 0.925

Other Fuel Taxes 1.000 -0.185 -0.066 0.000 0.000 0.000 0.025 0.775 1.000 -0.033 0.004 0.970 0.798
Jet Fuel 1.000 -0.310 -0.003 0.000 0.000 0.000 0.036 0.722 1.000 -0.048 0.006 0.958 0.754
Diesel 1.000 -0.059 -0.129 0.000 0.000 0.000 0.015 0.827 1.000 -0.019 0.001 0.982 0.842
Heavy Fuel * 1.000 -0.075 -0.001 0.000 0.000 0.000 0.007 0.931 1.000 -0.002 0.001 1.000 0.931
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.075 0.000 0.000 0.000 0.000 0.000 0.925 1.000 -0.364 0.001 0.637 1.451
E85 * 1.000 0.562 0.009 0.000 0.000 0.000 0.411 1.982 1.000 -0.361 0.011 0.650 3.051

Other Revenue Raisers 0.979 -0.150 -0.014 0.012 0.000 0.000 -0.108 0.719 1.000 0.109 0.003 1.112 0.647
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 -0.323 0.540 1.000 0.176 0.002 1.178 0.459
CARE 0.936 -0.303 0.000 0.036 0.000 0.000 0.117 0.785 1.000 0.086 0.006 1.092 0.719
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 -0.119 0.831 1.000 0.065 0.001 1.065 0.780

Cap and Trade 1.000 -0.359 -0.495 0.000 0.000 0.000 0.000 0.146 1.000 -0.028 0.007 0.979 0.149
RGGI 1.000 -0.657 -0.989 0.000 0.000 0.000 0.000 -0.646 1.000 -0.050 0.013 0.963 -0.671
CA CT 1.000 -0.061 -0.002 0.000 0.000 0.000 0.000 0.937 1.000 -0.006 0.001 0.996 0.941
ETS (BA) * 1.000 -9.192 0.000 0.000 0.000 0.000 0.000 -8.192 1.000 -0.900 0.180 0.280 -29.287
ETS (CMMW) * 1.000 -1.279 0.000 0.000 0.000 0.000 0.000 -0.279 1.000 -0.125 0.025 0.900 -0.310

Panel D. International

Cookstoves 4.101 20.103 0.000 0.000 0.000 0.000 0.000 24.203 1.000 0.000 -0.393 0.607 39.846
Cookstove (Kenya) 7.656 43.161 0.000 0.000 0.000 0.000 0.000 50.817 1.000 0.000 -0.843 0.157 323.453
Cookstove (India) 0.545 -2.956 0.000 0.000 0.000 0.000 0.000 -2.410 1.000 0.000 0.058 1.058 -2.279

Deforestation 0.462 14.443 0.000 0.000 0.000 0.000 0.000 14.905 1.000 0.000 -0.282 0.718 20.761
REDD+ (SL) 0.000 35.840 0.000 0.000 0.000 0.000 0.000 35.840 1.000 0.000 -0.700 0.300 119.438
Deforest (Uganda) 0.421 4.538 0.000 0.000 0.000 0.000 0.000 4.959 1.000 0.000 -0.089 0.911 5.441
REDD+ 0.965 2.951 0.000 0.000 0.000 0.000 0.000 3.916 1.000 0.000 -0.058 0.942 4.156
Deforest (Mexico) * 0.944 0.740 0.000 0.000 0.000 0.000 0.000 1.684 1.000 0.000 -0.014 0.986 1.709

Rice Burning 0.944 9.385 0.000 0.000 0.000 0.000 0.000 10.329 1.000 0.000 -0.183 0.817 12.646
India PES (Upfront) 0.972 10.642 0.000 0.000 0.000 0.000 0.000 11.614 1.000 0.000 -0.208 0.792 14.661
India PES (Standard) 0.915 8.128 0.000 0.000 0.000 0.000 0.000 9.043 1.000 0.000 -0.159 0.841 10.749

Wind Offset 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641
Offset (India) 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641

International Rebates 0.667 -0.022 0.000 0.004 0.000 0.000 0.000 0.649 1.000 0.000 0.000 1.000 0.649
Fridge (Mexico) 0.750 0.125 0.000 -0.024 0.000 0.000 0.000 0.850 1.000 0.000 -0.002 0.998 0.852
AC (Mexico) 0.750 -0.094 0.000 0.018 0.000 0.000 0.000 0.675 1.000 0.000 0.001 1.001 0.674
WAP (Mexico) 0.500 -0.096 0.000 0.019 0.000 0.000 0.000 0.422 1.000 0.000 0.002 1.002 0.422

International Nudges 0.000 3.801 0.000 -0.745 0.000 0.000 0.000 3.057 1.000 0.000 -0.060 0.940 3.251
Nudge (Qatar) * 0.000 7.201 0.000 -1.410 0.000 0.000 0.000 5.791 1.000 0.000 -0.113 0.887 6.529
Nudge (Germany) * 0.000 0.401 0.000 -0.079 0.000 0.000 0.000 0.323 1.000 0.000 -0.006 0.994 0.325

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Gas (West) * 1.000 -0.373 -0.332 0.000 0.000 -0.002 0.097 0.391 1.000 -0.120 0.007 0.888 0.440
Gas (Tiezzi) * 1.000 -0.354 -0.315 0.000 0.000 -0.002 0.093 0.421 1.000 -0.114 0.007 0.893 0.472
Gas (Bento) * 1.000 -0.285 -0.254 0.000 0.000 -0.002 0.074 0.534 1.000 -0.091 0.006 0.914 0.584
Gas (Hughes - Ext) * 1.000 -0.272 -0.243 0.000 0.000 -0.002 0.071 0.554 1.000 -0.088 0.005 0.918 0.604
Gas (Kilian - Ext) * 1.000 -0.255 -0.227 0.000 0.000 -0.002 0.067 0.582 1.000 -0.082 0.005 0.923 0.630
Gas (Small - Ext) * 1.000 -0.054 -0.048 0.000 0.000 -0.002 0.014 0.910 1.000 -0.018 0.001 0.984 0.925

Other Fuel Taxes 1.000 -0.185 -0.066 0.000 0.000 0.000 0.025 0.775 1.000 -0.033 0.004 0.970 0.798
Jet Fuel 1.000 -0.310 -0.003 0.000 0.000 0.000 0.036 0.722 1.000 -0.048 0.006 0.958 0.754
Diesel 1.000 -0.059 -0.129 0.000 0.000 0.000 0.015 0.827 1.000 -0.019 0.001 0.982 0.842
Heavy Fuel * 1.000 -0.075 -0.001 0.000 0.000 0.000 0.007 0.931 1.000 -0.002 0.001 1.000 0.931
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.075 0.000 0.000 0.000 0.000 0.000 0.925 1.000 -0.364 0.001 0.637 1.451
E85 * 1.000 0.562 0.009 0.000 0.000 0.000 0.411 1.982 1.000 -0.361 0.011 0.650 3.051

Other Revenue Raisers 0.979 -0.150 -0.014 0.012 0.000 0.000 -0.108 0.719 1.000 0.109 0.003 1.112 0.647
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 -0.323 0.540 1.000 0.176 0.002 1.178 0.459
CARE 0.936 -0.303 0.000 0.036 0.000 0.000 0.117 0.785 1.000 0.086 0.006 1.092 0.719
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 -0.119 0.831 1.000 0.065 0.001 1.065 0.780

Cap and Trade 1.000 -0.359 -0.495 0.000 0.000 0.000 0.000 0.146 1.000 -0.028 0.007 0.979 0.149
RGGI 1.000 -0.657 -0.989 0.000 0.000 0.000 0.000 -0.646 1.000 -0.050 0.013 0.963 -0.671
CA CT 1.000 -0.061 -0.002 0.000 0.000 0.000 0.000 0.937 1.000 -0.006 0.001 0.996 0.941
ETS (BA) * 1.000 -9.192 0.000 0.000 0.000 0.000 0.000 -8.192 1.000 -0.900 0.180 0.280 -29.287
ETS (CMMW) * 1.000 -1.279 0.000 0.000 0.000 0.000 0.000 -0.279 1.000 -0.125 0.025 0.900 -0.310

Panel D. International

Cookstoves 4.101 20.103 0.000 0.000 0.000 0.000 0.000 24.203 1.000 0.000 -0.393 0.607 39.846
Cookstove (Kenya) 7.656 43.161 0.000 0.000 0.000 0.000 0.000 50.817 1.000 0.000 -0.843 0.157 323.453
Cookstove (India) 0.545 -2.956 0.000 0.000 0.000 0.000 0.000 -2.410 1.000 0.000 0.058 1.058 -2.279

Deforestation 0.462 14.443 0.000 0.000 0.000 0.000 0.000 14.905 1.000 0.000 -0.282 0.718 20.761
REDD+ (SL) 0.000 35.840 0.000 0.000 0.000 0.000 0.000 35.840 1.000 0.000 -0.700 0.300 119.438
Deforest (Uganda) 0.421 4.538 0.000 0.000 0.000 0.000 0.000 4.959 1.000 0.000 -0.089 0.911 5.441
REDD+ 0.965 2.951 0.000 0.000 0.000 0.000 0.000 3.916 1.000 0.000 -0.058 0.942 4.156
Deforest (Mexico) * 0.944 0.740 0.000 0.000 0.000 0.000 0.000 1.684 1.000 0.000 -0.014 0.986 1.709

Rice Burning 0.944 9.385 0.000 0.000 0.000 0.000 0.000 10.329 1.000 0.000 -0.183 0.817 12.646
India PES (Upfront) 0.972 10.642 0.000 0.000 0.000 0.000 0.000 11.614 1.000 0.000 -0.208 0.792 14.661
India PES (Standard) 0.915 8.128 0.000 0.000 0.000 0.000 0.000 9.043 1.000 0.000 -0.159 0.841 10.749

Wind Offset 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641
Offset (India) 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641

International Rebates 0.667 -0.022 0.000 0.004 0.000 0.000 0.000 0.649 1.000 0.000 0.000 1.000 0.649
Fridge (Mexico) 0.750 0.125 0.000 -0.024 0.000 0.000 0.000 0.850 1.000 0.000 -0.002 0.998 0.852
AC (Mexico) 0.750 -0.094 0.000 0.018 0.000 0.000 0.000 0.675 1.000 0.000 0.001 1.001 0.674
WAP (Mexico) 0.500 -0.096 0.000 0.019 0.000 0.000 0.000 0.422 1.000 0.000 0.002 1.002 0.422



International Nudges 0.000 3.801 0.000 -0.745 0.000 0.000 0.000 3.057 1.000 0.000 -0.060 0.940 3.251
Nudge (Qatar) * 0.000 7.201 0.000 -1.410 0.000 0.000 0.000 5.791 1.000 0.000 -0.113 0.887 6.529
Nudge (Germany) * 0.000 0.401 0.000 -0.079 0.000 0.000 0.000 0.323 1.000 0.000 -0.006 0.994 0.325

Notes: This table presents the WTP and cost components for each policy in our sample using the baseline specification. Each component is normalized per dollar
of mechanical spending on the policy. The first column reports the size of the transfer. The next three columns report the environmental externality including
local externalities, global greenhouse gas externalities, and rebound effects (both global and local). The next two columns report learning by doing components
for both the environmental benefits and future price reductions. The next column reports impact on profits of oil/gas and utility sectors. The cost components
report the mechanical cost, followed by the fiscal externalities (state and federal tax and subsidy impacts), and the climate fiscal externality from the impact of
changes in climate on future GDP and thus future tax revenue. We report estimates for each policy in our sample along with category averages for each type
of policy. We denote policies excluded from our primary sample by “*”, and these policies are not included in our category average measures. All numbers are
calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.



Table 2: MVPF Versus Cost Per Ton

Panel A. With Learning by Doing MVPF Resource Government Social

Subsidies
Wind Production Credits 5.870 -103 46 -32
Residential Solar 3.862 -77 90 -67
Electric Vehicles 1.445 -458 1,356 -415
Appliance Rebates 1.164 -2 474 111
Vehicle Retirement 1.047 1,007 876 148
Hybrid Vehicles 1.012 577 5,940 -38
Weatherization 0.978 194 779 207

Nudges and Marketing
Opower Elec. (166 RCTs) 2.548 -41 77 70

Revenue Raisers
Gasoline Taxes 0.671 -104 -770 -64

Panel B. Without Learning by Doing

Subsidies
Wind Production Credits 3.851 -42 69 -8
Residential Solar 1.446 4 237 83
Electric Vehicles 0.961 963 2,422 283
Appliance Rebates 1.164 -2 474 111
Vehicle Retirement 1.047 1,007 876 148
Hybrid Vehicles 0.998 659 6,087 43
Weatherization 0.978 194 779 207

Nudges and Marketing
Opower Elec. (166 RCTs) 2.548 -41 77 70

Revenue Raisers
Gasoline Taxes 0.673 -104 -768 -62

Cost Per Ton

Notes: This table presents estimates of the MVPF and cost-per-ton measures using our three definitions:
resource cost per ton, government cost per ton and social cost per ton. See text for precise definitions of each
measure. We present estimates here for each policy category average; the Appendix provides estimates for each
policy. All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a
2% discount rate.
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