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Abstract

One of the promising opportunities offered by AI to support the decarbonization of electricity grids
is to align demand with low-carbon supply. We evaluated the effects of one of the world’s largest Al
managed EV charging tariffs (a retail electricity pricing plan) using a large-scale natural field experi-
ment. The tariff dynamically controlled vehicle charging to follow real-time wholesale electricity prices
and coordinate and optimize charging for the grid and the consumer through AI. We randomized fi-
nancial incentives to encourage enrollment onto the tariff. Over more than a year, we found that the
tariff led to a 42% reduction in household electricity demand during peak hours, with 100% of this
demand shifted to lower-cost and lower-emission periods. The tariff generated substantial consumer
savings, while demonstrating potential to lower producer costs, energy system costs, and carbon emis-
sions through significant load shifting. Overrides of the Al algorithm were low, suggesting that this
tariff was likely more efficient than a real-time-pricing tariff without AI. Our findings highlight the po-
tential for scalable Al managed charging and its substantial welfare gains for the electricity system and
society. We also show that experimental estimates differed meaningfully from those obtained via non-
randomized difference-in-differences analysis, due to differences in the samples in the two evaluation
strategies, although we can reconcile the estimates with observables.
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1 Introduction

Artificial intelligence (AI) presents both significant threats and promising opportu-
nities for the future of the power grid (International Energy Agency, 2025a). A grow-
ing body of work highlights the increasing electricity demand, and resulting grid strain,
driven by Al itself, particularly through the rapid expansion of data centers (De Vries,
2023; Aljbour et al., 2024; Bogmans et al., 2025; Chen, 2025; Pilz et al., 2025). This
concern dominates the current public and policy discourse (Erdenesanaa, 2023; Kolbert,
2024). Yet Al also offers tools to improve the efficiency and flexibility of energy systems.
In particular, it could be used to forecast, manage, coordinate, personalize, and optimize
energy demand in the face of rising loads and variable renewable supply (Schweppe et al.,
1981; Antonopoulos et al., 2020; Biswas et al., 2024; Boopathy et al., 2024; Sandalow et al.,
2024).

AT has the potential to optimize energy demand management for both residential and
industrial customers. In theory, the most efficient approach is real-time pricing (RTP),
which directly exposes consumers to the marginal cost of electricity (Nicolson et al., 2018;
Borenstein, 2005b; Hinchberger et al., 2024). However, a significant body of evidence sug-
gests that consumers are reluctant to engage with day-ahead or real-time prices, due to
the cognitive burden and effort required to optimize their usage, along with the price
uncertainty they must constantly monitor (Harding and Sexton, 2017; Fabra et al., 2021).
In this context, AI managed tariffs offer a potential compromise, enabling real-time re-
sponsiveness at the consumer level while still allowing suppliers to engage in risk man-

agement and hedging strategies.!

Furthermore, Al enables suppliers or aggregators to
optimize on behalf of millions of customers’ devices, helping to smooth out fluctuations

in demand and maintain stability in wholesale prices.

Electric vehicles (EVs) are a compelling test case for these opportunities. As mobile,
flexible loads with storage capacity, EVs can draw and inject power across the grid, poten-
tially helping to smooth fluctuations from variable renewables and shift load across time
and space. Realizing this potential, however, poses complex challenges: how to schedule
charging to minimize costs without risking range anxiety, how to coordinate large num-
bers of vehicles to avoid local grid congestion, and how to adapt in real time to changing

current and future electricity prices and user behavior. These are exactly the kinds of

IThe idea traces to MIT’s late-1970s work on Homeostatic (Utility) Control; see Schweppe et al. (1980) for the initial
formulation and Schweppe et al. (1981) for the residential “utility—customer marketplace,” in which a home controller
manages loads against time-varying (spot) prices subject to consumer preferences.
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high-dimensional, dynamic problems where AI excels. As a result, EVs, and the systems
designed to manage them, have become central to the computer science and engineer-
ing literatures exploring how Al can make energy systems more adaptive, resilient, and
efficient (Rigas et al., 2014; Kaack et al., 2022; Yaghoubi et al., 2024).

The keen interest in managing EV charging is because EVs will likely become one
the largest users of electricity in the future. Global sales of EVs have increased year-on-
year over the past decade (50-fold increase), comprising more than 20% of new cars in
2024 (International Energy Agency, 2025b); indeed, by 2030, EVs are expected to account
for 15% of total global demand growth, a contribution several times larger than that of
data centers (Agency, 2024). With falling battery costs and mandates in many markets to
phase out internal combustion engine (ICE) vehicles, the number of EVs on the road is set
torise in the coming decade.? However, if left unmanaged, this new load could strain grid
infrastructure, particularly during peak periods (Li and Jenn, 2024; Bailey, Brown, Shaffer
and Wolak, 2025; Bernard et al., 2025), threatening grid reliability, raising system costs,
and exposing consumers to higher electricity prices, especially in areas with congestion
or high marginal generation costs. Unmanaged charging also misses the opportunity for
consumers to benefit from off-peak or low-emissions periods, which are likely to become

more pronounced as renewable penetration increases.

Despite increasing policy and commercial interest in AI managed charging (Hilder-
meier et al., 2022), there remains limited causal evidence on how consumers actually
engage with Al or Al-based tariffs (Black et al., 2024). While utilities and regulators
across the globe have produced forecasts of how managed charging might shape electric-
ity demand and prices (Lowell et al., 2017; Bradley et al., 2018; Seamonds and Lowell,
2018; NYSERDA, 2021; Anwar et al., 2022; Jones et al., 2022), these projections often lack
a credible counterfactual, limiting their empirical validity given behavioral uncertain-
ties around customers’ plug-in behavior, adherence to managed charging schedules, and
overall acceptance of utility- or Al-controlled charging. In the United States alone, over
$100 million has been allocated across at least ten recent or ongoing managed EV charg-
ing pilots (SEPA, 2024), yet none constitutes a proper field experiment with a credible
counterfactual. Moreover, none deploy Al-based charging management at meaningful
scale, and all suffer from limited sample sizes, severely undermining statistical power

and the reliability of their conclusions. These shortcomings underscore the need for rig-

2The UK plans to end the sale of new cars powered solely by ICE by 2030, and hybrids and vans by 2035 (Department
of Transportation, 2025). The European Union has legislated to effectively ban new ICE cars by 2035 as part of its “Fit
for 55” climate package (European Commission, 2023). The US previously aimed for 50% of new vehicle sales to be
electric by 2030, but this executive order has since been revoked (The White House, 2025).
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orous empirical experiments.

Our paper addresses this gap by presenting what we believe is the only natural field
experiment to date on the adoption and impact of a managed EV charging tariff - and
notably, one driven by Al In partnership with Octopus Energy, the UK’s largest electric-
ity supplier, we implemented a large-scale randomized encouragement design targeting
13,233 suspected EV owners across Great Britain.®> The intervention promoted the Intel-
ligent Octopus (10) Go tariff, which combines time-of-use (ToU) pricing with Al managed
charging.* The ToU component was designed as having an “off-peak” rate overnight ap-
proximately 50% lower than the standard rate, whereas all other times of the day, prices
were set at or slightly above the standard rate (see Figure Ala). If the Al decided to charge
the EV during the day, it would charge the customer the lower off-peak rate.

IO Go is now, to the best of our knowledge, the world’s largest managed EV charging
tariff, serving approximately 300,000 customers across the UK and expanding rapidly in
the US, Germany, France, Italy, and Spain.5 In our setting, the Al managed charging tariff
uses real-time wholesale prices as a key input into scheduling charging, without expos-
ing consumers to these granular prices. It combines linear programming with machine
learning models to minimize expected energy costs, reduce grid congestion, and support
grid balancing, all subject to customer-set constraints (a “ready-by" deadline and target
state of charge). The Al tariff we studied represents a partial and centrally coordinated
implementation of RTP. It preserves key elements of allocative efficiency by shifting load

away from high-cost periods but bypasses price-based incentives at the individual level.®

3To determine whether a customer might own an EV, we used data on household electricity consumption to look
for evidence of power draws consistent with ownership of a wall charger. This was done in conjunction with domain
experts at Octopus Energy.

4The AI management is carried out by Kraken Technologies, a technology company owned by Octopus Energy
Group. In practice, the system ingests real-time data from EVs, household loads, weather forecasts, wholesale prices,
grid constraints, and user preferences. It then applies machine learning—based forecasting and classical linear pro-
gramming to determine optimal charging schedules across batches of devices, updating in real time and adjusting
when necessary to provide ancillary services such as system balancing (the AI currently uses no large language models
to solve these prediction and optimization problems). The literature variously refers to such arrangements as “man-
aged charging,” “smart charging,” or “utility-controlled charging.” For example, Lagomarsino et al. (2022) define smart
charging as coordinated systems that optimize charging for grid balancing and/or user preferences, while Axsen et al.
(2017) describe utility-controlled charging as timing decisions delegated to a third party to reduce costs or support
renewables (see also Kubli 2022; Bailey and Axsen 2015). By contrast, time-of-use tariffs are a form of user-managed
charging in which customers shift demand directly in response to prices (Sovacool et al., 2017; Delmonte et al., 2020).
Here we use “managed” and “smart” interchangeably to refer specifically to retailer-controlled charging.

5Currently, the tariff manages roughly 2GW of power in Great Britain (Green, 2025).

5While one way to assess the efficiency of this Al managed charging tariff is by estimating its correlation with
wholesale prices (Hinchberger et al., 2024), this proves challenging in our case. The Al is performing a complex real-
time optimization to maximize overall welfare, not just in wholesale markets, but also in ancillary services, while
simultaneously optimizing consumer welfare. This includes aggregating and coordinating user preferences to ensure
EVs are charged when needed. Additionally, the sufficient statistics approach to evaluating tariff efficiency overlooks
total net benefits, particularly the role of tariff take-up and the own-price and cross-price elasticity (over time) of
those who take up the tariff. Al has the promise of making RTP tariffs palatable (i.e., reducing the need for consumer
attention and reducing high price uncertainty) in the future for consumers.
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The field experiment allowed us to estimate the causal effect of financial incentives on
adoption of the Al managed charging tariff, and to use this variation to instrument for the
impact of managed charging on electricity consumption. Treated trial participants were
emailed and randomly assigned to one of four groups: (1) email only; (2) £5/month; (3)
£50/month; or (4) £50/month conditional on not overriding the Al managed charging,
with all payments lasting three months. A pure control group received no contact. We
examined two primary outcomes: (1) tariff take-up and (2) electricity consumption, with
particular focus on consumption during the evening peak demand period from 16:30-
20:30, over the 12 months following the encouragement, and we follow our pre-analysis

plan (unless otherwise stated).

In addition to the experimental analysis, we conducted a supplementary difference-
in-differences (DiD) analysis using observational data to estimate the impact of managed
charging on electricity consumption among customers who voluntarily adopted the tar-
iff outside of the trial. We compared electricity use before and after adoption for these
customers, relative to a control group of similar customers who had not yet adopted, ex-
ploiting variation in adoption timing. This approach provides complementary evidence

on the effects of managed charging in a real-world, self-selected yet scaled-up setting.

The intervention we studied represents a bundled treatment that combines time-of-
use (ToU) pricing, automated scheduling, and real-time algorithmic optimization. We
cannot separately identify the contribution of each component. However, as electricity
systems grow more complex, with greater price volatility from renewable generation and
weather variability, the proliferation of distributed assets, and increased participation of
those assets across multiple markets, purely deterministic or rule-based scheduling may
become less effective. In such settings, more advanced Al architectures for coordination
and adaptive control may become increasingly valuable (Si et al., 2025; Wang et al., 2025).
At the same time, understanding consumer acceptance of Al-managed systems remains
critical, since there is far less empirical evidence on how households respond to Al-driven

automation, as opposed to more familiar ToU or deterministic scheduling systems.

1.1 Primary findings

We report six main sets of findings.

First, we found that email-based encouragements increased take-up of the AI man-
aged charging tariff. Across all incentive groups, assignment to treatment led to higher
4



enrollment in the IO Go tariff relative to the control group. While the absolute increases
in take-up were modest in absolute terms, even the email-only group, with no monetary
incentive, raised enrollment by 3.4 percentage points, while the two £50/month arms
nearly doubled that effect. Importantly, we suspect that these take-up rates represent a
lower bound, as enrollment was constrained by technical compatibility: trial participants
needed a supported charger or EV to join. Lacking data on compatibility, we cannot iden-
tify the true eligible population. Thus, the measured effects likely understate the poten-
tial impact in a fully compatible setting.” We find a price elasticity of the take up of the
managed tariff to be -0.143.

Second, we observed strong retention and widespread acceptance of Al managed
charging among trial participants. Trial participants who enrolled in IO Go largely re-
mained on the tariff, with post-incentive take-up rates statistically indistinguishable from
those during the first three months. Among adopters, we observe high adherence to the
Al managed charging schedule: over half never overrode the supplier charging schedule,
on any given day there is a 1% likelihood of overriding, and only 2.3% of total electric-
ity consumption occurred via overrides. These patterns suggest that, once adopted, Al
managed charging integrates smoothly into daily routines with minimal disruption, un-
derscoring its potential for long-term grid flexibility. Importantly, these override percent-
ages are far below the threshold where RTP would dominate an AI-ToU tariff, according
to a theoretical model we developed to quantify the conditions under which AI managed
charging (with overrides) has welfare dominance over RTP. This is even true when the Al
algorithm only controls 20% of the household’s energy demand (roughly the amount of
energy from EV charging in our sample). These empirical and theoretical findings sug-
gest that Al may be the best feasible option in the presence of attention constraints and

other real frictions.

Third, using treatment assignment as an instrument for tariff adoption, we estimated
that Al managed charging reduced peak-period electricity consumption by 42%, with the
entirety of that load shifted to overnight off-peak hours. There was no change in total
electricity use, indicating that the program induced temporal load shifting rather than
increased consumption. This shifting was similar across all of the randomized encour-
agement groups (email, low incentive, high incentive, and high incentive plus cost to

override).

7 According to informal estimates shared by Octopus Energy staff via personal communication, 60-70% of EV own-
ers were likely compatible with IO Go in 2024, based on available EV and charger integrations.



Fourth, the Al appeared to enhance responsiveness to wholesale electricity prices be-
yond the effects of the peak to off-peak shifting. We examined consumption patterns of
trial participants who signed up to the AI tariff versus those who signed up to a similar
ToU pricing regime but with no AI management of charging. Comparing the two groups,
we found that participants who signed up to IO Go exhibited higher elasticity with re-
spect to wholesale electricity prices during peak evening and off-peak overnight hours,
whereas daytime responsiveness is similar across groups. While we cannot interpret these
differences causally due to non-random assignment, the results suggest that the Al man-
aged scheduling in IO Go helps shift consumption away from high system prices within
periods of the day, i.e., above and beyond between-period shifting that a static ToU tariff
is designed to achieve.

Fifth, DiD estimates were smaller than the experimental estimates. We believe this
difference was due to differing samples. While both the experimental and DiD approaches
reveal similar directional patterns of load shifting, the experimental instrumental vari-
ables estimates indicated a 42% reduction in peak-period consumption, compared to just
8% in the DiD estimates. An important contributor to this gap is that many customers in
the DiD sample were already on time-of-use tariffs before adopting 10 Go, leaving them
with less potential for further consumption change. After reweighting the DiD sample
to match the experimental group on prior tariff type, the estimated peak reduction rises
to 22%: narrowing, but not eliminating, the gap. This weaker peak effect is compen-
sated for by a decline in daytime, non-peak consumption. We interpret these findings
as evidence that compositional differences between self-selected IO Go adopters and our
RCT sample explain much of the discrepancy, with voluntary adopters exhibiting higher
baseline flexibility and thus smaller observable peak reductions. We hypothesize that the
intraday differences in impacts reflect greater daytime flexibility among the self-selected

participants in the DiD sample from smart technology.

Sixth, we estimated the consumer, producer, grid, and social welfare benefits of this
Al managed charging tariff. The reallocation of electricity use to periods with substan-
tially lower rates reduced trial participant bills by £343 per year (an estimated 18% re-
duction in cost per kWh). When benchmarked against the retailer’s standard flat tariff,
the estimated savings rise to roughly £650 per year.® The electricity retailer saw similar

savings in procurement costs (procurement costs include the wholesale price of power

8The counterfactual for our £343 estimate is the average bill of the control group in the experimental period, which
includes many tariffs. The £650 figure uses our estimated consumption treatment effects from Figure 7,relative to the
bill under the standard flat tariff.



and non-energy charges such as transmission and distribution fees), implying near 100%
pass-through of savings to trial participants, at least based on the period of our anal-
ysis. Impacts on CO,e emissions were large.” The resource cost per tonne saving was
extremely large (in the negative direction) for consumers. We estimated a resource cost
per tonne of —£888, which is an order of magnitude lower than the next-best technology
(Gillingham and Stock, 2018; Gosnell et al., 2020; Hahn et al., 2024).

1.2 Contribution to the existing literature

Our research contributes to the literature on tariff switching and dynamic pricing.
The closest empirical papers to ours in the tariff-switching literature are Fowlie et al.
(2021) and Ito et al. (2023), who both studied consumer choices of time-varying tar-
iffs. Both ran randomized experiments and studied adoption as well as consumption.
Ito et al. (2023) documented selection on price-elasticity and consumption profiles in a
framed field experiment and showed that providing consumers with take-up incentives
encouraged more switching, and the more elastic consumers were more likely to adopt
time-varying pricing. Fowlie et al. (2021) compared the adoption rates and aggregate de-
mand response of ToU (and critical peak pricing) under opt-in and opt-out set-ups in a
natural field experiment. They found that demand response decreases over time among
always-takers and increases over time among complacents. However, both papers con-
sidered time-varying tariffs where rates were set ex-ante and therefore cannot address
issues related to spot price uncertainty (except via critical peak pricing), which is a key
element in the case of real-time pricing and/or Al managed tariffs that optimize around
such prices. In their set-ups, the only uncertainty consumers face relates to their pref-
erences and in particular how costly it is to change their consumption habits.!? These

papers also did not have an Al component.

In our setting, once consumers enroll, intra-day energy demand adjustments were
fully managed by AI. This suggests little selection on levels and slopes, since the behav-
ioral effort required from consumers was minimal, in contrast with Einav et al. (2013) and
Ito et al. (2023).!! These results raise broader welfare questions about the role of Al in

managing consumption of intertemporal goods with time-varying prices. Three related

9Electricity-related emissions are generally lowest overnight, when wind and nuclear generation dominate, and
highest during the evening peak, when falling solar output and rising demand bring more gas generation online.
10This within-day variation and the associated welfare benefits of such change is also related to the work of Hahn
et al. (2023).
1 Other costs affecting selection on tariff levels may remain, such as lack of control (Bailey and Axsen, 2015) or
privacy concerns (Moser, 2017).
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studies speak to automation in similar contexts. Blonz et al. (2025) examined the impact
of automated temperature set-points through a smart thermostat in an opt-in field exper-
iment with ToU pricing. While their system had no AI component (the automation was
deterministic, and did not update over time or use machine learning), they convincingly
demonstrated the benefits of the automation (raising temperature set-points in the sum-
mer during the peak price part of the day) and low override rates. Our findings of "set
and forget" (via automation) having similarly low overrides support their results. Bailey
et al. (2024) and Khanna et al. (2024) studied utility-managed demand response in opt-in
experiments, again without AI. We extended these important contributions by leveraging

a natural field experiment with Al deployed in a scaled-up market product.

Beyond these related studies, a broader literature on tariff switching and design doc-
uments significant inertia and inattention in energy markets, often attributed to high
switching costs (Hortagsu et al., 2017; Byrne et al., 2022; Gravert, 2024; Garcia-Osipenko
et al., 2025). Our study is the first, to the best of our knowledge, to estimate switching
costs in a natural field experiment by randomizing financial incentives for tariff switch-
ing. We found a price elasticity of switching to an Al tariff to be -0.143, suggesting the

importance of switching costs.!?

We also leveraged our empirical findings to create a theoretical model building on the
conceptual foundations of Joskow and Tirole (2006b), who studied optimal tariff menus
in competitive retail electricity markets. In their two-stage framework, consumers first
choose among contracts and then respond to real-time wholesale prices under the terms
of their chosen tariff. They showed that with sufficiently low transaction and metering
costs, high-granularity tariffs such as RTP dominate coarser options like flat or ToU pric-
ing. We retained the two-stage structure but add an Al managed option in which price
response is automated. Critically, we also allowed for partial non-compliance in the form
of overrides, which generate deviations from the optimal automated schedule. This ex-
tension reveals conditions, captured by a closed-form “crossover override rate” thresh-
old, under which automation can outperform RTP even when RTP’s transaction costs are

small, and conversely when frequent overrides erode the automation advantage.

We also connect to Borenstein (2005b), who formally demonstrated that RTP can im-
prove both allocative and investment efficiency relative to static retail tariffs. Borenstein’s

model, however, assumes full compliance under RTP and abstracts from behavioral fric-

12prior work in health, telecommunications, and energy has typically estimated switching elasticities using structural
models or by experimentally varying the information provided about costs and benefits across options.
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tions such as attention costs, risk aversion, or non-compliance with automated control.
Our contribution is to embed these frictions explicitly in the welfare ranking exercise and
to operationalize compliance as a stochastic decision margin with a measurable thresh-
old. By doing so, we bridge the gap between the “full compliance” efficiency case for RTP
and the more friction-aware tariff choice models in the retail competition literature.!® In-
deed, many RTP tariffs have struggled with low adoption and limited demand response,

largely due to rational and/or irrational inattention and aversion to price uncertainty.!*

Our experimental design allows us to measure override rates, estimate the welfare
gap absent overrides, and compare the realized override frequency to the theoretically
derived crossover rate. In this way, the model delivers not just comparative statics but
concrete experimental benchmarks for when automation should, and should not, replace
direct price exposure. The scalability, efficacy, and consumer acceptance of an Al hybrid
tariff like this suggest they may become the dominant model for EV (and possibly heat

pump) households, which will be the modal household in the next ten to fifteen years.

Our paper also contributes to the growing literature on EV charging, particularly work
that explores how consumers respond to incentives to shift charging behavior (Burkhardt
et al., 2023; Garg et al., 2024; La Nauze et al., 2024; Bailey, Brown, Shaffer and Wolak,
2025; Bernard et al., 2025). While these studies provided important insights, they primar-
ily examine manual charging decisions and typically involved selected or opt-in samples.
A close and innovative study by Bailey, Brown, Myers, Shaffer and Wolak (2025) exam-
ined managed charging versus ToU in a small framed field experiment in Canada, but the
managed charging component had no AI built in and the study lacked sufficient power
to demonstrate the impact of managed charging for energy demand against the null.!®
In contrast, our study is the first to evaluate a large-scale, Al managed charging product
embedded within a real market tariff, with no selection into the experimental sample.
We examined the world’s largest managed EV charging program, implemented through a
natural field experiment in partnership with a major electricity supplier, which allowed
us to capture consumer demand in a real-world setting, free from selection biases into
the sample. Moreover, our focus on Al-driven automation offers novel insights into how

intelligent systems, not just prices, can coordinate household electricity demand at scale.

I3For quantitative simulations of RTP’s welfare gains, see Holland and Mansur (2006) for PJM, Poletti and Wright
(2020) for New Zealand, and Imelda et al. (2024) for renewable-heavy systems, such as the case of Oahu, Hawaii.

14gee Borenstein (2007); Allcott (2011); Joskow and Wolfram (2012); Wolak (2013); Fabra et al. (2021); Leslie et al.
(2021); Cahana et al. (2022); Pébereau and Remmy (2023); Enrich et al. (2024) for evidence.

15 Another close study is by Burkhardt et al. (2023), who demonstrated a successful proof-of-concept pilot of night-
time off-peak prices in shaping EV charging demand, without any management from the utility.
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There is a large body of work suggesting the importance of EV charging infrastructure
and policies on long-term EV adoption (Zhou and Li, 2018; Archsmith et al., 2022; Powell
et al., 2022; Rapson and Muehlegger, 2023b,a; Heid et al., 2024; Turk et al., 2024; Asensio
et al., 2025; Dorsey et al., 2025; Gillingham et al., 2025). Our research contributes to this
literature by causally estimating how an Al managed charging tariff can reduce the costs
of adopting an EV, increase consumer surplus, optimize charging in line with grid condi-
tions so as to reduce costs building and operating electricity systems. These components
are important for any welfare calculations of any EV policy. In our welfare framework,
there are large cost reductions, but uncertainty on whether such reductions are captured
all by firms and consumers or whether the government will also spend less on the grid in

the future (which would generate a Pareto improvement if so).

We also connect to a literature, largely outside of economics, on the grid-level bene-
fits of flexible EV charging (Heuberger et al., 2020; Crozier et al., 2020; Li and Jenn, 2024;
Powell et al., 2022; Franken et al., 2025). These studies typically use power system models
to determine the least-cost mix of generation, storage, and transmission, and then assess
how EV adoption and charging shape system costs and reliability. Our work comple-
ments this modeling approach by providing empirical evidence on real-world charging
behavior and the flexibility of EV demand. We show that participants largely adhere to
Al-scheduled charging, and that the consumption impacts of adoption and adherence
are similar across subgroups and between early and late adopters. This strengthens con-
fidence that the flexibility assumed in system models is achievable in practice, and that it

may persist as EV adoption broadens to later adopters.

Finally, we contribute to the research on the economics of AI by demonstrating how Al
can causally affect environmental outcomes.!® While prior natural and field experiments
have examined AI’s impact on labor productivity (Agarwal et al., 2023; Cui et al., 2024;
Bjorkegren et al., 2025; Brynjolfsson et al., 2025), we believe that our study is the first to
provide causal evidence indicative of reduced energy consumption under Al-driven op-
timization, where we do not observe differences across broad household types. Although
scholars have highlighted the challenges of identifying AI’s effects in labor markets (Bryn-
jolfsson et al., 2019; Frank et al., 2019), these identification barriers are less pronounced
in energy and environmental contexts. Al often lowers the cost of effort, making it dif-
ficult to disentangle AI from price effects and isolate its unique impact. This matters

because reducing effort, through tools, automation, or process improvements, has long

16This complements work showing that Al data centers could impact on energy flexibility and thus emissions (Knittel
et al., 2025).
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influenced labor markets, yet existing studies rarely separate this effect from Al itself. In
our setting, the reduction in effort occurs on the retailer side in responding to wholesale
prices or ancillary markets, while consumer prices remain unaffected by the Al’s opti-

mization.

The paper is structured as follows: Section 2 provides an overview of the natural field
experiment, including the sampling, the intervention (i.e., the AI-EV tariff), the random-
ized encouragement, the randomization procedure, and available data. Section 3 devel-
ops the demand estimates from the field experiment. Section 4 complements Section 3
with a difference-in-difference analysis of the intervention, and attempts to reconcile with
the experimental estimates. Section 5 presents the welfare estimates of the intervention

and the randomized encouragement, and finally, Section 7 concludes.

2 Experimental design

This section describes the design and implementation of our field experiment. We be-
gin by detailing the eligibility criteria and sampling strategy used to construct the study
population. We then describe the AI managed charging tariff and its underlying automa-
tion, before outlining the randomized encouragement design used to induce uptake. We

conclude by summarizing our randomization procedure and the data used in the analysis.

2.1 Eligibility into the field experiment

We implemented the field trial in partnership with Octopus Energy, the United King-
dom’s largest electricity supplier. We defined the target population as residential cus-
tomers satisfying three criteria: (i) they were likely to own an EV; (ii) as of December
2023, they had only ever subscribed to conventional flat-rate or variable-rate tariffs — that
is, they had no prior engagement with managed tariffs; and (iii) they resided in houses
(rather than apartments/flats or mobile homes), which are likely suitable for at-home

charging.

As we lacked administrative records on EV ownership, we inferred it using household
electricity consumption data from smart meters. Following internal technical guidance,
we defined “suspected charging events” as four to twelve consecutive half-hourly inter-

vals with half-hourly total usage exceeding 3.5 kWh, consistent with Level 2 (7 kW) home
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charging. We averaged the number of such events per week over a ten-week window in
summer 2023 (July—August), and classified as “suspected EV owners” those customers
with between 0.5 and 4 events per week (these thresholds were chosen in consultation
with Octopus Energy colleagues with subject matter expertise on typical EV charging

frequency among customers).

This sampling strategy yielded 13,233 trial participants who are more plausibly rep-
resentative of mainstream British EV owners. Unlike early adopters already enrolled
in smart tariffs, these trial participants are likely to be more price-sensitive, less moti-
vated by environmental ideology, and more similar to the broader population of potential

adopters of managed charging technologies.

2.2 The intervention: Intelligent Octopus (10) Go

IO Go is a residential electricity tariff that combines time-of-use pricing with AI man-
agement of automated EV charging. Through the Octopus app, customers set a target
battery level and departure time; Octopus then schedules charging to meet those targets
(Figure 1a). In exchange, IO Go provides a favorable electricity rate of £0.07/kWh during
a fixed six-hour off-peak window (23:30-05:30).!7 This rate applies not only to EV charg-
ing but to all household consumption during that period. Charging that occurs outside
the scheduled off-peak window is still billed at the off-peak rate if it is initiated by the
Al automation. Customers retain the ability to manually override this schedule via a mo-
bile app (“bump charging”, shown in Figure 1b). When customers charge outside of the
schedule, it is billed at the higher rate. The applicable tariff schedule for 2024 is shown

in Figure 2.

The 10 Go tariff uses Al to generate charging schedules based on wholesale electricity
prices, adapted to the market structure of each region where it is offered. In Great Britain,
where wholesale prices are national, schedules are optimized using a blend of day-ahead
and intraday wholesale prices, with intraday data available on a rolling-hourly basis. In
most European markets, the optimization is updated daily based on day-ahead wholesale
prices, while in the United States, the algorithm relies on forecasts of real-time prices. The
optimization window can extend up to 24 hours into the future, accommodating user-
specific “ready-by” times. These may require intraday charging plans — such as afternoon

readiness — or more commonly, overnight charging plans, particularly in Great Britain.

170ctopus Energy’s standard tariff Flexible Octopus charges a flat rate of approximately £0.22-£0.27 per kWh
throughout the day, depending on region, as shown in Figure 2.
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Figure 1: IO Go Charging Controls via Mobile App
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Figure 2: Tariff Rates

Unit Rate
(p/kWh)
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Notes: This figure shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30-05:30, dark purple) and the peak daytime period (05:30-23:30, light purple). For comparison, we also include
the Flexible Octopus tariff from Octopus Energy, which maintains a flat rate throughout the day.

Following the baseline price-driven optimization, the system supports a secondary ad-
justment layer for participation in ancillary service markets and real-time grid-balancing
operations. In this mode, the EV portfolio is managed as a coordinated fleet with portfolio-
level volume targets, allowing for dynamic adjustment of charging schedules in response
to market trades or direct requests from system operators. This enables dual operational
modes: price-only optimization, in which vehicles charge during the lowest-cost peri-
ods (often aligning with high renewable output), and price-plus-volume optimization,
in which charging is redistributed to meet specific aggregate energy delivery constraints

while maintaining cost efficiency.

The optimization engine integrates two complementary computational approaches:
classical linear programming and machine learning—based forecasting (the AI currently
uses no large language models to predict or optimize). The linear programming com-
ponent solves for the cost-minimizing charging schedule subject to technical and oper-
ational constraints, such as maximum charging rates, user readiness requirements, and
fleet-wide volume limits. The machine learning component enhances this process by pro-
viding predictive inputs to the optimization, including forecasts of EV availability (based
on historical connection patterns), expected charging requirements for vehicles not yet
connected, and local load predictions, including home consumption and on-site solar

generation when applicable. These forecasts are updated in real time, enabling the op-
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Figure 3: AI Managed Scheduling Framework
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timization to adapt to changing conditions. A diagram outlining the structure of the Al

scheduling framework is shown in Figure 3.

From an efficiency point of view, a key advantage of IO Go’s automation is to mitigate
inefficiencies due to human error, bounded rationality, or rational inattention. In envi-
ronments where consumers are either rationally inattentive or lack the sophistication to
respond optimally to high-frequency price signals, automated optimization under IO Go
may yield strictly higher social welfare (from a net benefits or resource cost-effectiveness

point of view) than consumer-managed RTP (see Appendix A.6 for some predictions).

In addition, the British electricity system includes multiple ancillary and flexibility
markets, with overlapping mechanisms for valuing flexibility. Market participants re-
spond not only to wholesale price signals but also to a range of network, balancing, and
capacity markets, including the Capacity Market, Balancing Mechanism, and various fre-
quency response and distribution network services. This complexity means that optimiz-
ing against a single real-time or day-ahead wholesale price would fail to capture value
available in other markets. IO Go’s automation enables the retailer to allocate charging

efficiently across these interacting price signals.
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2.3 Therandomized encouragement design

The trial participants in our sample were randomized into one of five arms:

1. Control group (n = 2,205): no outreach

2. Email (n = 7,720): encouragement email with no financial incentives for signing up
to I0 Go

3. Email + £5/month incentive to sign up (n = 1,101): encouragement email with offer

of £5/month for three months for signing up to IO Go

4. Email + £50/month incentive to sign up (n = 1,102): encouragement email with

offer of £50/month for three months for signing up to IO Go

5. Email + £50/month incentive to sign up (n = 1,105), no bump charging (overriding):
encouragement email with offer of £50/month for three months for signing up to 10
Go. Additionally, they pay £2 of their incentive for each day they “bump charged" -
that is, overrode the Al control at least once per day. This was designed to probe trial

participants’ willingness to tolerate even less control over their charging schedule.

Each treatment arm received a single encouragement email from Octopus Energy’s
marketing team, reproduced in Appendix A.4.1. These messages included a prominent
call to action, a theoretical £700/year savings estimate (based on historical usage mod-
eling), and tariff-specific details, with minor variations in content to reflect the assigned
incentive level. The “no bump” group was explicitly informed that their monthly pay-
ment would be reduced by £2 for each day they initiated a manual override of managed

charging.

Encouragement emails were dispatched in two waves: the first on February 15, 2024,
and the second on March 20, 2024. Incentive payments were credited to trial participants’
Octopus Energy account balances, accruing daily over a 90-day period conditional on
maintaining an active IO Go contract. In effect, this structure functioned as a discount on
the customer’s electricity bill, lowering the effective cost of household energy use during

the incentive window.

Note that it was required by our implementing partner, Octopus Energy, that our en-
couragement emails for IO Go inform customers that Octopus Energy offers other tariffs

that may have better met their needs. Importantly, IO Go is not compatible with all
16



chargers or vehicles; for these circumstances, Octopus Energy offers an alternative EV
tariff: Octopus Go, a time-of-use EV tariff offering a fixed off-peak rate for electricity. The
major differences from Intelligent Octopus Go are: (1) it offers one fewer hour of cheap
overnight rate (00:30-5:30, instead of IO Go which is 23:30-5:30) (2) its off-peak rate is
higher than 10 Go’s (£0.085/kWh, as compared to £0.07/kWh for IO Go; for exact rates,
see Figure A1b), and (3) Octopus Go does not incorporate managed charging and thus has
no bonus off-peak windows. This creates the possibility that encouragements influenced
uptake of tariffs other than IO Go, posing a potential channel for exclusion restriction

violations. We test and discuss this in Section 3.1.

2.3.1 Hypotheses

The design of the field experiment allowed us to test two main pre-specified hypotheses:

1. Increasing the incentive payment for adopting IO Go will increase actual adoption.

2. Adoption of 10 Go tariff will shift electricity consumption from peak (16:00-20:00)
to off-peak (23:30-5:30) hours.

These two hypotheses are not from the same family and thus we did not correct for mul-
tiple hypothesis testing across them. However, we will go into some of the testable pre-

dictions from the design below.

2.4 Tying the Experiment to a Theoretical Framework

From a welfare analysis perspective, we expect the 1O Go tariff to generate distinct
outcomes relative to RTP, depending on the scope for optimization and the behavioral
frictions consumers face. IO Go can outperform RTP when it leverages price signals from
multiple markets—such as ancillary service opportunities that are typically excluded
from the RTP signal.!®

We consider EV charging under four tariff regimes: flat (the baseline counterfactual

our sample begins on), time-of-use (ToU) without automation, real-time pricing (RTP)

181n principle, RTP could incorporate such signals, but doing so would require a richer and less transparent price
vector, as well as greater computational and behavioral demands on consumers. IO Go may instead yield lower welfare
than RTP when intertemporal optimization across days offers larger gains than within-day shifting, or if users system-
atically fail to plug in their EVs when charging would be most cost-effective. However, evidence from RTP studies
suggests that cross-day shifting is rare, and our data show no systematic plug-in failures.
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without automation, and the Al-assisted tariff “IO Go” with possible household over-
rides (“bump charging”). Households require a given amount of energy by a deadline,
have specific plug-in hours, and face inconvenience costs when charging at less-preferred

times.

The retailer’s total cost depends on total load and wholesale prices, net of ancillary-
service revenues. Under 10 Go, charging is centrally scheduled to minimize these costs;
under RTP, households self-schedule but face attention costs and bill-volatility risk. ToU
households respond only to fixed peak/off-peak prices.

We present the full model and formal predictions in Appendix A.6, which builds upon
Borenstein (20054,b); Joskow and Tirole (2006a,b). Here, we summarize the key intuition:
automation under IO Go will generally increase welfare relative to RTP when users face
attention or risk costs. However, under IO Go, households may override the optimized
schedule when their immediate value from charging exceeds the deferred benefit net of
a hassle cost. Such overrides can increase user utility but raise system costs if they shift
load into expensive or high-emission hours, thereby narrowing the welfare gap between
IO and RTP.

Let WIO and WRTP denote per-EV welfare without overrides, and define the baseline

welfare gap:
AW, = WO - wRTP, (1)

If overrides occur at rate /3 with per-override welfare loss A, total IO welfare becomes:
WIO+O — WIO _/5/1 (2)
We approximate A empirically as:

i ~ Ppeak AEeff ’ qO: (3)

where ppeqi is the probability that an override lands in a peak period, Al is the peak-
off-peak price spread (£/kWh), and ¢© is the mean energy shifted per override.

Lemma. If AW, >0 and A > 0, the override rate at which IO welfare equals RTP

welfare is:

> ()

In a stylized UK calibration with RTP price elasticity of demand ¢ = —0.2 (consistent
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with or above values in the literature), and assuming that EV demand represents 25% of
total flexible load, we obtain f* ~ 0.33 overrides per EV-day at moderate attention costs.
Higher attention costs or lower RTP elasticities increase this threshold. Appendix A.7
provides the full calibration for the UK and the other IO Go markets.

Our model builds on strands of the energy economics and operations literature that
model demand under dynamic electricity pricing. Threshold-style decision rules, in
which users act only when net private benefits exceed a frictional cost, appear in online
EV charging optimization under RTP (Yi et al., 2019), where a dissatisfaction penalty
plays a role similar to our hassle cost ¢;. Menu-based contract designs for EV charg-
ing (Ghosh and Aggarwal, 2017) and joint welfare-maximizing scheduling algorithms
(Huang et al., 2023) adopt multi-stage decision structures that parallel our two-stage ex-
tension, in which households first adopt a tariff and then choose whether to override

automation.

Our framework also relates to the generalized Roy model of Ito et al. (2023), who study
voluntary take-up of dynamic pricing plans using marginal treatment effects to character-
ize heterogeneity in welfare gains from adoption. In their setting, the key policy-relevant
object is the optimal adoption cutoff; in ours, it is the crossover override rate at which an
Al-managed schedule ceases to dominate RTP in welfare. Both identify a threshold along
a behavioral margin—adoption or overrides—at which the welfare ranking of competing

regimes changes.!”

Relative to this literature, our contribution is to embed such a behavioral threshold in
an Al optimization framework for EV charging, explicitly linking override behavior to ag-
gregate welfare outcomes and producing sharp, testable predictions for our experimental
design. Based on our parameterization—with a price elasticity of demand under RTP of
¢ = —0.2 and moderate attention costs—our simulations imply that an average override
rate below B* ~ 0.33 per EV-day would make the Al tariff welfare-dominant relative to
RTP.

190skow and Tirole (2006b) present a general model of retail electricity competition in which tariff menus are de-
signed to elicit efficient real-time demand response, subject to transaction and metering frictions. In their frame-
work, sufficiently low frictions imply that high-granularity pricing schemes such as RTP dominate coarser alternatives.
Borenstein (2005b) similarly show that RTP improves allocative and investment efficiency relative to flat or ToU rates
in competitive markets, assuming full compliance and ignoring behavioral frictions. Our model extends these frame-
works in two key ways: (i) we introduce an Al-managed regime (IO) that automates price response, removing house-
hold attention costs but allowing partial non-compliance through overrides; and (ii) we model overrides as a distinct
behavioral margin with its own welfare implications. This richer friction structure implies that IO Go can outperform

RTP even when RTP’s transaction costs are small, provided override rates remain below the crossover threshold ﬂ*,
and conversely that high override rates can reverse the ranking—an effect absent from the original Joskow-Tirole and
Borenstein formulations.
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2.5 Randomization

Random assignment was implemented using a block randomization procedure to im-
prove covariate balance across trial arms (Moore and Schnakenberg, 2023). Prior to as-
signment, trial participants were grouped into 1,109 blocks of twelve customers based
on Mahalanobis distance calculated over a set of pre-encouragement variables predictive
of EV ownership and electricity consumption. These included historical electricity us-
age, tenure as a customer with Octopus Energy, and past engagement with smart tariff
onboarding. Within each block, two trial participants were assigned to the pure con-
trol group, seven to the £0/month encouragement group, and one each to the £5/month,
£50/month, and £50/month (no bump) groups — reflecting both budget constraints and
the firm’s commercial interest in maximizing exposure to IO Go. Randomization was per-
formed separately within each of the United Kingdom’s 14 electricity distribution regions
to ensure geographic stratification. This procedure yielded excellent covariate balance

across trial arms (Table A1, and Figure A2).

2.6 Data

Our analysis drew on high-frequency administrative data from Octopus Energy, Great
Britain’s largest electricity supplier, with personal identifiers removed. We focused on
two primary outcomes for our two hypotheses: (1) take-up of the 10 Go tariff, measured
as a binary indicator for whether a trial participant held an active IO Go contract dur-
ing week t; and (2) electricity demand, observed at half-hourly resolution and expressed
in kilowatt-hours (kWh). We aggregated consumption to the week x hour-of-day level.
Electricity demand includes both EV-related and non-EV household load; concretely, we
summed smart-meter readings (which measure consumption from all appliances, not just
the EV charger) across all meter point administration numbers linked to each trial par-
ticipant account. These outcomes are observed from January 1, 2024 through March 31,
2025.%

Figure 4 shows average hourly electricity consumption in the pre-encouragement pe-
riod (i.e., January 2024), showing an expected evening peak beginning around 16:30.

Baseline consumption for our trial participants is much higher than that of a random sam-

20 A meter point administration number (MPAN) is a unique ID for an electricity supply point (e.g, a house) in relation
to a specific area of the UK’s national electricity grid. Tariff-contracts and half-hourly measurements of electricity use
are tied to account identifiers via MPANSs. A single account can have multiple MPANs with different tariff agreements
that are simultaneously active.
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ple of other Octopus Energy customers. Notably, we also observe substantial overnight
consumption, consistent with EV charging behavior. We believe this is partly driven by
plugging the EV after work in the evening and the default scheduling behavior in com-
mon EV chargers, which sometimes pre-set charging to off-peak times.?! Our interven-
tion thus tests the additional impact of managed charging in a setting where at least some

users are already defaulted into off-peak charging schedules.

We focus our analysis on off-peak periods (23:30-05:30) and peak periods (16:30-
20:30), following our pre-registration. Off-peak periods correspond to IO Go’s hours of
cheap overnight rates. Peak hours capture the period of highest intensive domestic elec-
tricity consumption (Few et al., 2022). That said, it is worth noting that the definition
of “peak” and “off-peak” may change and themselves become more variable by day and

season in the coming years.

Figure 4: Pre-Trial (January 2024) Hourly Consumption
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Notes: This figure shows average hourly electricity consumption across the sample in January 2024, prior to the start
of the trial. Trial participants are grouped by (1) those who later spent more than 50% of the trial period on Intel-
ligent Octopus Go or Octopus Go (2) those who remained on other tariffs, and (3) a random 20,000 sample of other
Octopus Energy customers. Shaded regions show the 95% confidence interval. Octopus Go is an alternative time-of-
use EV tariff designed for customers who either had hardware that was incompatible with IO Go or did not wish to
enroll in automation. Green shaded box indicates I0 Go off-peak hours (23:30-05:30), when electricity is charged at
£0.07/kWh; all other hours are billed at the standard variable rate. Blue shaded box indicates typical system peak
hours (16:30-20:30), which are highlighted to show times of heightened grid stress.

For trial participants who adopted 10 Go, we also collected customer settings and

21Since June 2022, the UK’s Electric Vehicles (Smart Charge Points) Regulations 2021 have required that all new private
EV chargers include a default charging mode set outside of peak hours (8-11am and 4-10pm), along with a randomized
delay function to reduce grid strain.
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high-frequency telemetry on charging behavior. The settings include: (1) the ready-by
time, defined as the user-specified time by which the vehicle should be fully or partially
charged; and (2) the desired state of charge by that time. The telemetry data include: (1)
plug-in and unplug timestamps; (2) charging start and charging end timestamps; and (3)
an indicator for whether the charge was automatically dispatched by Octopus or man-
ually overridden by the user. These data allowed us to reconstruct intended charging

preferences, actual charging behavior, and deviations from automated control.

We used additional administrative data at the daily level to estimate consumer and
supplier benefits. First, to measure benefits to consumers, we used administrative data
from Octopus Energy detailing each customer’s unit rate per kWh. Second, to estimate
benefits to the electricity supplier (in procurement cost savings), we used administrative
data on each customer’s wholesale energy costs, as well as non-energy costs, per settle-
ment period. Non-energy costs include Transmission Network Use of System (TNUoS)
and Distribution Use of System (DUoS) charges, capacity market payments, and policy
costs (such as charges supporting Contracts for Difference); some of these charges vary
by period of day (e.g., DUOS). This yields an imputed per-kWh cost that combines the

energy and non-energy costs of supplying electricity.

For an exploration of sub-group heterogeneity, we used area-level deprivation data
from the UK-wide composite Index of Multiple Deprivation (IMD), small area measures
of relative deprivation across each of the United Kingdom. Areas were ranked from the
most deprived area (rank 1) to the least deprived area, based on income, employment,
education, health, crime, barriers to housing and services, and the living environment.
This index was constructed by Parsons and mySociety (2021) using methods from Abel
et al. (2016). This version harmonizes the constituent country-specific IMDs to a common
England-anchored scale, enabling deprivation comparisons across the UK’s statistical re-

porting areas.

To quantify CO,e impacts, we integrated data from WattTime, a U.S.-based nonprofit
that produces historical estimates of the Marginal Operating Emissions Rate, or the emis-
sions associated with the marginal change in load on the grid (WattTime, 2022). Watt-

Time data is available at five-minute intervals.
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3 Experimental results

This section presents the main empirical findings from our field experiment. We be-
gin by documenting the impact of the encouragements on trial participant enrollment
in a managed EV-charging tariff. We then examine how these changes in enrollment
influenced electricity consumption patterns, using both reduced-form and instrumental
variable approaches. Finally, we explore heterogeneity in treatment effects, user behavior
under the managed charging regime, and the added value of automation beyond conven-
tional time-of-use pricing. We followed our pre-analysis plan (PAP), but state where we
added or deviated away from it, why we did, and their implications for interpretation in
Appendix A.3.

3.1 Impact of encouragement on take-up of managed charging

We begin by estimating the effect of encouragement on trial participants’ likelihood
of adopting a managed EV-charging tariff. Specifically, we estimate the following linear

probability model for whether trial participant i is enrolled in the IO Go tariff in week t:
DI = 1tg+ 11 Z; + TPy + 103(Z; X Py) + pyp + py + €54 (5)

Here, Dl-ItO is a binary indicator equal to one if trial participant i is on an IO Go contract
in week t. Z; is a set of four binary indicators capturing the encouragement assignment,
with the control group omitted as the reference category. P;; denotes whether participant
i is in the incentive period in week t, where the incentive period is the three months after
the start of the trial. We include fixed effects for randomization block p;, and calendar

week ;. Standard errors are clustered at the level of participant and week.

We observe an increase in take-up across all treatment groups, as shown in Table A2.
During the 90-day incentive window, the £0/Month and £5/Month groups each increased
the probability of take-up by approximately 3.4 percentage points, while the £50/Month
and £50/Month (No Bump) groups nearly doubled that effect, reaching 5.9 and 5.7 per-
centage points, respectively. Take-up in the control group is also rising over time, but
remains consistently lower than that observed in any encouragement arm (Figure A3).
At the end of the three-month incentivization period, take-up in the control group stood
at 2.7%, compared to 7.0% and 6.8% in the £0/Month and £5/Month groups, respec-
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tively. The higher incentives resulted in the greatest adoption, with the £50/Month and
£50/Month (No Bump) groups reaching 9.3% and 9.2%.22. We calculated a price elasticity
of 0.143 between the £0/Month and £50/Month groups using the arc elasticity formula,
which compares the change in take-up rates relative to the midpoint of both the take-up

and total incentive levels (£0 vs £150).

Across most encouragement arms, post-incentive enrollment remained stable. We
formally test this in Table A2, interacting the encouragement indicators and the post-
incentive period indicator in Table A2. The persistent retention after the incentive period
suggests that the initial encouragements had durable effects even in the absence of con-
tinued subsidy payments. Only the £50/Month (No Bump) experienced a statistically
significant drop of 1.6 percentage points after incentives ended. These results can be fur-
ther visualized in Figure 5, which shows estimates of Equation (5), split by month since
treatment. Retention dropped only in the group facing restrictions on manual overrides,
suggesting that managed charging is more likely to succeed when framed as a convenient
default rather than a rigid mandate. Encouragements that showcase consumer benefits

and flexibility can foster lasting adoption.

Importantly, take-up is mechanically constrained by compatibility: trial participants
need either their charger or EV to be supported by IO Go in order to enroll. For those
who do not enroll and have an EV, we do not observe their vehicle or charger details,
and there is no comprehensive national data on EV and charger ownership to fill this
gap. Therefore, we are unable to estimate what proportion of trial participants actually

have compatible equipment.?3

While IO Go is compatible with some of the most popular
home chargers (notably Ohme, MyEnergi/Zappi, and Hypervolt) this still represents only
a subset of the overall charger market. Compatibility via direct vehicle integration covers
several major EV brands, including Tesla, BMW, and VW, but again excludes some others.

Thus, the measured take-up rate represents a conservative estimate, limited by the extent

22Tariff contracts can change at the level of the day, and thus there could be some worry that take-up analysis at the
weekly level could be biased. We run a robustness check of take-up at the daily level in Table A3, and find extremely
similar results to Table A2

23In February 2024, we sent a survey to 305 trial participants who we had emailed as part of a pre-trial pilot (where
pilot trial participants are not in the sample of our main analyses). We received 68 responses. Among the 56 respon-
dents who expressed interest in signing up for IO Go, 17 indicated that they had not done so due to device incompat-
ibility. We also show in Figure A5 the completion rate for participants who started signing up for IO Go but did not
complete onboarding. 23%, did not complete onboarding, and this appeared balanced across encouragement groups.
These individuals were not included in our take-up rate. This does not represent the overall incompatibility rate,
for two reasons. First, many customers likely checked whether their device was compatible before starting sign-up,
since Octopus provides a compatibility survey on the sign-up page. Second, there may also be other reasons beyond
compatibility for not completing onboarding, such as hassle factors associated with onboarding.
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Figure 5: Impact of Encouragements on Take-up of Managed Charging Tariff (I0 Go)
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Notes: This figure plots the intention-to-treat effects of four email-based encouragements to adopt a AI managed charg-
ing tariff (Intelligent Octopus Go), split by month since receiving the email. The outcome is a binary indicator for
weekly use of the tariff. Each panel corresponds to a different encouragement group, varying in the level of offered
financial incentive. Shaded areas represent 90% (dark) and 95% (light) confidence intervals, with standard errors clus-
tered at the participant and week level. The dashed vertical line indicates the end of the 90-day incentive period.

to which trial participants’ vehicles or chargers were compatible with 10 Go.?4?

As IO Go is not yet compatible for all customers, Octopus Energy offers an alternative
EV tariff, Octopus Go, described in Section 2.3. As a result of our email-based encourage-
ments, we observed a nontrivial increase in take-up of Octopus Go; our speculation is that
this was driven by customers who owned devices incompatible with IO Go. Compared
to the effects on take-up of Intelligent Octopus Go, the impacts on Octopus Go adoption
were smaller — roughly 30% as large as those for the £0/Month and £5/Month groups,
and 8-11% as large as those for the £50/Month and £50/Month (No Bump) groups, al-
though the effects in the latter two groups are not statistically significant (Table A5). The
results suggest that, although uptake was concentrated among adopters of the managed-
charging product, the encouragements induced a more general shift toward tariffs de-
signed for EV needs more generally. This affects how we interpret the impacts of IO Go

on electricity consumption, which we will discuss more in Section 3.3.26

24Gee this link for compatibility with charge points. I0 Go is also compatible with several major EV brands.

25To further contextualize these take-up rates, the email open rate was 78% across all treatment groups, with most
opens occurring on the day following delivery and no qualitative variation across treatments (Figure A4). Noncompli-
ance with the intended IO Go take-up can thus be a result of not receiving or opening the encouragement email.

2610 Go has another rival tariff, Agile Octopus, which is a variable-rate tariff with prices linked to the day-ahead
wholesale cost of electricity. Take-up of Agile was quite low in our sample, and we found no effect of our encouragement
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Additionally, we tested for selection on levels — that is, whether adoption of 10 Go
could be explained by observable baseline characteristics, and in particular whether struc-
tural winners (those with higher expected bill savings) were more likely to enroll. We
estimated a logit regression of IO Go take-up on encouragement assignment, expected
structural winnings, and baseline covariates. We estimated four specifications that pro-
gressively increased flexibility: (1) a baseline model including only the incentive and
expected winnings; (2) an expanded model adding additional covariates; (3) a model
allowing for interactions among covariates; and (4) a final specification incorporating

nonparametric controls for expected savings.

We found no evidence of selection on levels: the coefficient on expected winnings was
small and statistically insignificant across all specifications. The results, presented as
marginal effects at the means of the covariates in Table A6, suggest that customers with
greater expected financial savings were not systematically more likely to adopt. There is
some evidence of selection on socioeconomic status — households in the second and third
terciles of the Index of Multiple Deprivation were more likely to enroll than those in the
most deprived tercile. In addition, customers who were already on a time-of-use tariff

prior to the trial were more likely to take up IO Go.

The explanatory power of these models is extremely low: the squared correlation co-
efficients from the propensity-score estimates are near zero, and the estimated propen-
sity scores themselves occupy a narrow range. This limited variation implies that most
of the heterogeneity in IO Go take-up arose from unobserved factors rather than ob-
servable characteristics. Moreover, the propensity scores produced by the four models
are not highly correlated with one another, underscoring the instability of the selection
equations. As a result, we were unable to estimate marginal treatment effects to further

understand selection on slope and heterogeneous treatment effects.

3.2 Impact of encouragements on electricity consumption

We next assess whether encouragement-induced take-up translated into changes in
electricity consumption over the course of the day. Specifically, we estimated intention-

to-treat (ITT) effects of each encouragement arm on hourly electricity use (kWh) using

design on take-up of Agile Octopus.
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the following specification:

Yinp=a+BZi+yXip+y+ P + €y (6)

where Y;;,; denotes mean electricity consumption for user i in hour h during week ¢, Z; is
a vector of binary indicators for each encouragement assignment, X;;, is user i’s average
pre-encouragement January 2024 consumption during hour h?7, and 1}, and ¢, are fixed
effects for block and week, respectively. Standard errors were clustered by user and by
week (Colin Cameron and Miller, 2015). To obtain hour-specific effects, we estimated
the model separately for each hour of the day. To analyze broader periods (i.e. peak
vs. off-peak), we grouped hours into the relevant period and ran the regression on those

aggregates.

Figure 6 presents ITT estimates by encouragement arm, split by hour-of-day. All
groups showed increased consumption during the overnight off-peak period (23:30-05:30)
and modest reductions during peak hours (16:30-20:30), consistent with the tariff’s in-
centive to shift usage. Patterns are broadly similar across arms, although the £0/Month

and £50/Month (No Bump) treatments exhibit the largest declines in peak consumption.

When pooling all treatments into a single encouragement indicator and estimating a
regression over all hours within the specified peak and off-peak windows, we find that
receiving any encouragement increased off-peak consumption by 2% (0.019 kWh) and
reduced peak consumption by 2% (-0.026 kWh), with no overall effect on total usage
(Table A4).

3.3 Impact of managed charging on electricity consumption

To obtain the causal impact of adoption of the managed charging tariff on electric-
ity consumption, we used an instrumental variables estimation. In the first stage, we
instrumented tariff adoption with random assignment to any of the four email-based en-

couragements:

Dipt =10+ 101 Zi + Y Xipn + pp + Pt + €ips (7)

27This control variable was not specified in our pre-analysis plan, but we included it to enhance the precision of our
estimates.
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Figure 6: Impact of Encouragements on Hourly Electricity Consumption
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Notes: This figure shows intention-to-treat effects of four email-based encouragements on hourly electricity use (kWh),
using data from the 12 months after sending out the email (estimated using Equation (6), split by hour-of-day). The first
panel defines encouragement as a binary indicator for whether the user received any encouragement. Each subsequent
panel represents a separate encouragement arm with varying incentive levels. Lines depict 90% (dark) and 95% (light)
confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO Go off-peak
hours (23:30-05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard variable rate.
Blue shaded box indicates typical system peak hours (16:30-20:30), which are highlighted to show times of heightened
grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour to align with
IO Go’s pricing structure. Percentages represent treatment effects as a share of the control group trial participants who
are not on an EV tariff, for off-peak (23:30-05:30, green) and peak (16:30-20:30, blue) periods. Estimates come from
regressions pooling all hours in each window, as reported in Table A4 and defined in Equation (6).

where Z; is a binary indicator for whether the user received any encouragement. X
denotes average baseline consumption for user i in hour h. The specification includes

fixed effects for randomization block (y;) and calendar week ().

As shown in Section 3.1, our encouragements increased adoption of both the managed-
charging tariff (IO Go) and the EV-oriented time-of-use alternative (Octopus Go). To pre-
serve the exclusion restriction, given that our instrument affects both products, we define

D;; as an indicator for take-up of either IO Go or Octopus Go.?®

In the second stage, we regressed hourly electricity use on predicted tariff status:

(8)

28This deviates from our pre-analysis plan, reflecting our uncertainty at the outset of the trial about whether we
would face this exclusion restriction violation.

Ying =a+ BDips + y Xin + Yp + s + iy
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where Y}, is the mean daily consumption for user i in hour h of week ¢ (i.e., the mean
daily consumption at each hour, averaged across the week). Standard errors are clustered
at both the participant and week levels. We estimated this regression over the 12 months

after encouragement emails were sent out.

This approach is valid under standard instrumental variables (IV) assumptions: (i)
relevance — encouragement must increase adoption, which we confirm with strong first-
stage effects already shown in Table A2; (ii) independence — random assignment ensures
encouragement is uncorrelated with unobserved determinants of outcomes, which holds
given our block randomization strategy (Appendix A.4.2); (iii) exclusion — encourage-
ment should affect electricity use only through tariff adoption, which we preserve by
pooling IO Go and Octopus Go as the treatment; and (iv) monotonicity — no customers
should be less likely to adopt when encouraged, which is plausible given the nature of
the intervention. Under these conditions, the IV estimates identify the Local Average
Treatment Effect (LATE): the causal effect of adoption for customers who take up a tariff

if they receive the encouragement.?’

We found that adoption of EV tariff significantly shifted consumption from peak to
off-peak hours. When we estimate Equation (8) over all hours within the specified peak
and off-peak windows, our main specification shows that peak-period usage fell by 42%
(0.581 kWh average hourly reduction), while off-peak usage rose by 50% (0.481 kWh
average hourly increase). This is a substantial reallocation of demand rather than an
increase in overall consumption. Consistent with this interpretation, Table A9 reports no
change in total electricity use. This load shifting pattern is further illustrated in Figure 7,

which shows consumption estimates, split by hour-of-day.

Our preferred specification uses a single binary instrument for assignment to any of
the four encouragements. Combining the four encouragement groups into a single binary
instrument mitigates concerns raised in Mogstad et al. (2021), particularly the potential
for negative weights being assigned to individual instruments when multiple instruments
are used. To assess robustness, Figure 7 also shows (i) a specification that includes the
four encouragement indicators as separate instruments and (ii) 4 additional specifica-
tions that use each encouragement indicator as a stand-alone instrument. The estimated

effects are similar across specifications, indicating that our findings are not sensitive to

29The LATE identifies the effect of IO Go for compliers, not the population average treatment effect. Our random-
ized encouragement generates exogenous variation in assignment, but treatment can only be estimated for those who
comply with encouragement. Compliance itself involves multiple stages—such as opening and reading the email—and
these decisions may correlate with unobserved characteristics.
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Figure 7: Impact of EV Tariff on Electricity Consumption
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Notes: This figure reports IV estimates of the effect of adopting an EV tariff on electricity consumption (kWh), split
by hour-of-day. The instrument is an indicator for assignment to any email-based encouragement. Each panel reports
a different specification: (1) is our main specification (Equation (8)); (2) defines a separate instrument for each en-
couragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to just the £50/Month
group and the control group; (5) just the £50/Month (No Bump) group and the control group. All specifications con-
trol for baseline consumption, and fixed effects for randomization block and week. Lines depict 90% (dark) and 95%
(light) confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO
Go off-peak hours (23:30-05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard
variable rate. Blue shaded box indicates typical system peak hours (16:30-20:30), which are highlighted to show times
of heightened grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour
to align with IO Go’s pricing structure. Percentages represent average treatment effects as a share of the control group
trial participants who are not on an EV tariff, for off-peak (23:30-05:30, green) and peak (16:30-20:30, blue) periods.
Estimates come from regressions pooling all hours in each window, as reported Tables A7 and AS8.

the instrument definition.3°

As a comparison, the consumption profile of the baseline group — control households
who did not adopt an EV tariff — exhibits a pronounced peak beginning around 16:30,
consistent with typical residential demand patterns and uncoordinated EV charging be-
havior (see Figure 8). Using the estimated treatment effects from the main specification in
Figure 7, we overlay the causal impact of EV tariff adoption onto the baseline profile. This

constructed profile illustrates how the EV tariff shifts electricity demand away from the

30Note that this preferred specification deviates from our pre-analysis plan of using the encouragement arms as
four separate instruments. However, results from the pre-specified analysis, which includes all four encouragement
indicators in the regression, are presented in the second panel of Figure 7.
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evening peak and toward the designated overnight off-peak period. The resulting pattern
flattens the peak-hour hump and concentrates usage during hours when electricity is less
expensive and there is less grid stress, underscoring the potential of managed charging

to reshape intraday load without increasing total consumption.

Figure 8: Electricity Consumption With and Without EV Tariff Adoption
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Notes: This figure displays mean hourly electricity consumption (kWh) for trial participants in the control group who
were not enrolled in the EV tariff. The purple line (“Baseline”) plots their observed consumption. The black line (“With
EV Tariff”) adds the estimated hourly treatment effects of EV tariff adoption, recovered from the IV analysis displayed
in the first panel of Figure 7. The shaded area denotes the 95% confidence interval for the treatment effect estimates.

3.4 Heterogeneity

We explored heterogeneity in treatment effects across consumers by interacting the
encouragement treatment with two key variables: (1) the Index of Multiple Deprivation
(IMD) and (2) baseline electricity consumption. In these specifications, we treat inter-
action terms (e.g., EV tariff x baseline covariate) as endogenous and instrument them
with the corresponding interaction of the randomized encouragement and the covariate,

consistent with standard IV practice.

The IMD is a composite measure that captures multiple dimensions of deprivation
(e.g., crime, housing barriers, health) for small geographic areas, weighted to produce

an overall deprivation score. For this analysis, we constructed IMD terciles by linking
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trial participants’ meter-point-level postcodes to area-level IMD ranks.>! Socioeconomic
status shapes Socioeconomic status shapes both the ability to adopt EVs and the potential
financial gains from managed charging. Households facing financial hardship could in
theory benefit most from cheaper charging, but structural barriers, such as lack of off-
street parking or neighborhood safety concerns, may prevent uptake. Understanding

these dynamics requires analyzing effects across the socioeconomic gradient.

For baseline electricity consumption, we computed the total kWh used per customer
by aggregating all available half-hourly smart meter readings per day over the period
from February 15, 2023, to August 31, 2023. Households with high baseline electricity
consumption may have greater flexibility to shift charging, since larger batteries or mul-
tiple EVs provide more scope to delay without running short of range. At the same time,
their greater and more time-sensitive energy needs can reduce flexibility, leaving less
room to adjust without disrupting routines. This dimension highlights whether man-
aged charging works chiefly for high-demand users or more broadly across households,

shaping expectations about scalability and future generalizability.

We do observe heterogeneity in take-up. Adoption of IO Go was higher in IMD ter-
ciles 2 and 3 (Figure A6A). Take-up also declined with baseline electricity use: house-
holds with higher pre-trial consumption were less likely to adopt, particularly under
the £50/Month (No Bump) condition (Figure A7A).This pattern suggests that higher-
consuming households may be more reluctant to accept restrictions on charging, perhaps

due to greater perceived disruption to their routines.

Turning to impacts on electricity consumption, we find limited evidence of heteroge-
neous impacts. Across both dimensions we consider, there is no evidence of differences
in off-peak effects. For peak hours, the largest reductions occur in the middle IMD tercile
(Figure A6b). However, these results should be interpreted with caution given the lim-
ited precision of subgroup estimates: only 9% of our sample resides in the most deprived
tercile, reflecting the strong association between EV ownership and higher socioeconomic
status (Figure A6c). The small sample size in this group restricts our ability to detect pre-
cise effects among more deprived households. By contrast, baseline electricity use shows
little role in shaping treatment impacts. Conditional on adoption, consumption effects

are broadly similar across all terciles of pre-trial consumption (Figure A7b).

31We discretize the IMD into terciles to avoid very small cell sizes in the most deprived group.
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3.5 Intelligent Octopus Go user behavior

For participants who adopted IO Go, we have telemetry data on their plug-in events
and charging sessions, allowing us to examine their behavior more closely. On average, 10
Go households consumed 1.02 kWh per hour (for their home overall, not just their EV),
equivalent to 8,935 kWh per year. Of this total, 22.6% was attributable to EV charging,
or around 2,020 kWh annually. If all charging occurred at home and the vehicle averages
about 3—-4 miles per kWh, this implies 6,000-8,000 miles driven per year. These figures
are consistent with the average annual car mileage in the UK (approximately 7,000 miles;
Department for Transport, 2024), suggesting that the mileage behavior in our sample is

comparable to that of primary household vehicles in the broader UK population.

We further explored how users from our sample engaged with automated EV charg-
ing. Two key patterns emerged: strong adherence to the automation schedule and a high
degree of behavioral consistency across users. Together, these findings suggest that man-

aged charging was generally well integrated into users’ routines with minimal disruption.

We begin with evidence of adherence to the automation schedule, which provides a
useful proxy for satisfaction with the tariff. We analyze 2,359 10 Go participants’ use
of the “bump" function, which allows them to override the default schedule and initi-
ate immediate charging. We find that 55% of users never used the bump feature at all
(Figure A11), and bump events accounted for only 2.3% of total IO Go electricity con-
sumption. These infrequent overrides, consistent across treatment groups, indicate that
the AI managed charging schedule is widely accepted and rarely disrupted. This is also
consistent with what we have seen in Figure 5, where the sustained uptake of 10 Go
suggests that trial participants generally accepted the automated approach. Overall, we
find that the probability that a customer overrides on a given day is 1.9%, and of that,
0.3% of that is in off-peak hours, and the rest is during the day (1.3%) and peak times
(0.3%). Given the simulations from the theoretical section, these numbers are well below

the crossover override rate where RTP dominates this Al EV-managed tariff (i.e., 33%).

Preferences for charging settings further reinforce this uniformity. 61% of trial par-
ticipants preferred their vehicle to finish charging between 07:00 and 09:00, and 93% set
their desired state-of-charge (SOC) at 80% or higher (Figure A8a). Plug-in patterns also
followed a predictable rhythm: more than half of plug-in events occur within 24 hours
of the previous one, typically following a post-work return home and preceding the next

morning’s commute (Figure A8b).
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Figure 9: Hourly Patterns of EV Plug-In and Charging Behavior
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Notes: Panel (a) shows, by hour of day, the percentage of electricity consumption that occurred during that hour. This
consumption is further divided into charging triggered by bump (charging initiated by users overriding the schedule)
versus charging scheduled by IO Go. Panel (b) plots, by hour of day, the percentage ot active users who had their EVs
plugged in. A user is considered active during a given hour if that hour falls between their first-ever and last-ever
recorded plug-in event. The analysis is based on data from 2,359 10 Go customers.

If customers were to begin charging as soon as they plugged in, typically between
5:00 and 7:00pm, it would place significant strain on peak demand. Managed charging
avoids this issue by decoupling plug-in time from charging time; customers still enjoy the
convenience of plugging in when they arrive home, while AI managed scheduling shifts

the actual charging to off-peak hours, as illustrated in Figure 9.

Importantly, these behaviors are all consistent across our encouragement groups, sug-
gesting that once trial participants opt into the tariff, they tend to use it in similar ways
(see Figures A9, A10 and A12). This behavioral consistency is mirrored in the relatively

homogeneous consumption impacts shown in Figure 7.

3.6 Value of Al managed charging beyond time-of-use tariff structure

The 10 Go and Octopus Go tariffs both feature time-of-use pricing, but, importantly,
IO Go includes Al managed charging, whereas Octopus Go relies on customers manually
adjusting behavior in response to the tariff’s day and off-peak rates or setting up their
own automated charger schedules to align with the tariff (but note that we do not observe
settings from these trial participants). To understand the added value of Al managed
charging, we estimated how consumption under IO Go responded to the real-time system

price, relative to consumption under Octopus Go.>> While neither IO Go nor Octopus

32In Great Britain, the system price is the market-wide wholesale price of electricity settled every half hour. It reflects
the cost of balancing supply and demand on the grid and is published by the National Energy System Operator (NESO).
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Go participants were directly exposed to system prices, the Al management of 10 Go
charging schedules responds to those prices on the retailer’s behalf. Thus, the observed
difference in elasticity reflects the supplier’s algorithmic responsiveness, not household-

level reactions to system costs.

Our analysis examined responsiveness to real-time system prices across three pe-
riods of the day: daytime (5:30-16:30), evening (16:30-23:30), and overnight off-peak
(23:30-5:30). We examined responsiveness using a Poisson regression, which accommo-
dates zero consumption and yields coefficients that can be interpreted directly as elastici-
ties of electricity consumption with respect to system prices. Table 1 reports results from

the following specification:

log(E[Y;;]) = a + p1Dj; + B2 log(Py) + B3[Djy x log(Py)] + pg 9)

where Y;; is electricity consumption for trial participant i at date-hour ¢, D;; is an indi-
cator for IO Go participation, and P, is the system price. The coefficient §, captures the
price elasticity of demand among the baseline group (Octopus Go users), while 3 cap-
tures the differential elasticity for IO Go users. We also included fixed effects for day d, so
that coefficients are identified from within-day variation across participants. The sample
in this analysis comprised the subset of our original trial sample (n = 13,233) who signed
up for either IO Go or Octopus Go (n = 2,963).33

Given that tariff assignment was not random, this analysis should be interpreted as
suggestive rather than causal. Many trial participants on Octopus Go were unable to
enroll in IO Go due to compatibility constraints rather than personal preference, limiting
selection into IO Go to some extent. However, even where this is the case, tariff choice
remains mechanically correlated with vehicle and charger type; and, it is true that some
Octopus Go customers may actively have chosen not to enroll in IO Go to retain autonomy

over their charging schedule.

Overall, we found within-period differences in the price elasticity of demand from
IO Go and Octopus Go customers — where, again, note that the price was the system
price that consumers themselves never saw, but rather was a key input the AI used
when scheduling charging. During the evening period that encompasses peak hours
(16:30-23:30), trial participants on IO Go exhibited significantly greater price respon-

siveness than Go customers: a -0.044 additional price elasticity of demand. During the

33This analysis was not pre-specified. We have included it as an exploratory analysis to help to isolate the automation-
related mechanisms.
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overnight off-peak window (23:30-05:30), the price elasticity of demand was again signif-
icantly greater for IO Go customers than Octopus Go customers (by -0.024). By contrast,
during daytime hours (05:30-16:30), the interaction term is statistically indistinguish-
able from zero, suggesting no meaningful difference in price responsiveness between the
two groups, possibly due to fewer vehicles being plugged in during these hours (and thus
less available charge to shift).

When pooling hours across the full day, there is no evidence that IO Go partici-
pants systematically shifted more consumption from higher-priced periods toward lower-
priced ones than Octopus Go customers (Column (4) of Table 1). If anything, Octopus Go
customers appeared to consume relatively more when prices were low, a counterintuitive
pattern. One explanation is selection: Octopus Go adopters may have been those who
received the IO Go encouragement but opted into Octopus Go without any monetary in-
centive. These participants may have had more demand flexibility than the incentivized
IO Go participants, which allowed them to be more able to respond to the ToU tariff
structure. It is also important to note that these estimates reflect total household con-
sumption, not just EV charging. Thus, the apparent responsiveness of Octopus Go users
could also reflect shifts in non-EV household load to overnight hours, rather than dif-
ferences in automated charging. Unfortunately, we lack telemetry data for Octopus Go
customers to directly test this mechanism. Finally, differences in the composition of the
two groups may also contribute to the pattern, with Octopus Go participants consuming
more in low-price periods than IO Go customers, though the relative balance of baseline
covariates between 10 Go and Octopus Go users, shown in A13, helps alleviate concerns

about compositional differences.

Our synthesis of these results is that within defined periods, the AI managed schedul-
ing feature in 10 Go shifted consumption away from high-price hours more aggressively
than trial participants exposed solely to Octopus Go’s ToU pricing. This enhanced re-
sponsiveness likely reflects the supplier’s ability to algorithmically optimize charging
schedules when vehicles were most likely to be plugged in. By contrast, Octopus Go
customers received a static overnight rate and had to determine their charging behavior

manually, leading to flatter responsiveness within periods.

Taken together, these results indicate that managed charging under IO Go not only
shifted demand away from the peak, but also redistributed it within periods in a way that
was responsive to real-time system costs. These findings suggest that managed charging

can outperform conventional time-of-use tariffs in aligning household electricity con-
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Table 1: Responsiveness to Systems Prices

period 5:30-16:30 16:30-23:30 23:30-5:30 All Hours

Model: (1) (2) (3) (4)

Variables

10 Go 0.075™ 0.077* -0.119* 0.089™
(0.030) (0.031) (0.036) (0.025)

log(Price) 0.047* -0.003 0.010 -0.125*
(0.008) (0.010) (0.013) (0.010)

10 Go x log(Price) -0.004 -0.041** -0.021" 0.017*
(0.009) (0.011) (0.011) (0.008)

Fixed-effects

date Yes Yes Yes Yes

Fit statistics

Octopus Go Mean 1.08 0.656 0.968 1.79

Observations 6,178,064 4,489,911 4,257,014 14,924,989

Clustered (User & date-hour) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports estimates from Equation (9), examining how average hourly elec-
tricity consumption under IO Go and Octopus Go responds to system prices. Column (1)
covers daytime hours (05:30-16:30), column (2) evening (16:30-23:30), column (3) overnight
off-peak (23:30-05:30), and column (4) pools together hours across the whole day. All regres-
sions included day fixed effects, so coefficients are identified from within-day variation across
participants; standard errors were clustered by user and hour.

sumption with the dynamic needs of the grid, closer to real-time.
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4 Alternative estimation strategy: difference-in-differences

In addition to our experimental design, we leveraged a differences-in-differences (DiD)
approach using observational data to estimate the impact of adopting IO Go on house-
hold electricity consumption. This strategy exploited the staggered, voluntary adoption

of IO Go across Octopus Energy customers in 2023.

Comparing estimates from the DiD to RCT allows us to contrast the behavior of vol-
untary early adopters of managed charging (captured by the DiD) with that of harder-
to-recruit individuals who required external encouragement to adopt (captured by the
RCT). The RCT sample may better reflect the future mainstream population, who are not
proactively engaged, but require more pricing and marketing interventions to adopt man-
aged charging. Some of the observed differences may also reflect other factors: changes
to the Intelligent Octopus algorithm over time, evolving day-ahead price profiles (par-
ticularly as the volatility of the energy crisis subsided), or methodological differences,
such as the potential for selection bias in the DiD estimates, as highlighted in critiques of
observational methods (LaLonde, 1986; Imbens and Xu, 2024).

4.1 Empirical strategy

We began with a sample of 100,986 customers who adopted Intelligent Octopus Go
(IO Go) at some point in 2023. To isolate the effect of IO Go from other contempora-
neous changes, we further restricted the sample to customers who likely already owned
an EV by December 2022, using the methodology outlined in Section 2.1. This ensured
that observed changes in consumption patterns are due to changes in charging behavior,
rather than the initial uptake of EVs. These restrictions resulted in a sample of 20,249

customers.3*

We implemented a standard event-study difference-in-differences estimator, allowing
for staggered adoption and dynamic treatment effects, following Callaway and Sant’Anna
(2021). We made a parallel trends assumption based on “not-yet-treated" units. For each

group of units first treated in week g, and for each week t > g, we defined the group-time

34This restriction was not specified in our pre-analysis plan. However, preliminary analysis revealed that failing to
condition on EV ownership by December 2022 would conflate the effects of tariff adoption with those of initial EV
uptake, thereby biasing our estimates of charging behavior.
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average treatment effect on the treated (ATT) as:
ATT(gt) =E[Y; = Yo 1 |G=g]-E[Y; - Yo 5| D; =0, G=g] (10)

where G = g denotes the cohort of units first treated at time g. We estimated both (1)
aggregate group-time effects, and (2) a single post-treatment estimate, constructed as the
weighted average of all group-time ATT estimates, with weights proportional to group
size. To mitigate potential bias from anticipation effects, we excluded the four weeks prior
to adoption from our estimation. Accordingly, our reference period, Y,_5, was hourly

consumption measured five weeks prior to the treatment.(Roth, 2024).%.

To enhance comparability, we limited control cohorts to those scheduled to adopt 10
Go no later than twelve weeks after the treated group’s anticipation period ends. This en-
sured treated units were compared only to future adopters with similar adoption timing.
We chose a twelve-week window to balance comparability of treated and control groups
against the length of the post-adoption estimation horizon. Comparability was assessed
by examining pre-treatment trends, and we selected the longest horizon that yielded sat-
isfactory pre-trend balance. Our treatment assessment therefore relied on the follow-
ing parallel trends assumption: absent adoption, treated and not-yet-treated households

would have experienced similar trends in electricity use.

In addition, to improve comparability with the RCT estimates and probe underlying
mechanisms, we estimated weighted versions of Equation 10, reweighting the DiD sam-
ple match the RCT sample based on pre-treatment tariff type. The RCT explicitly tried
to exclude customers with any prior smart tariff usage.?® Since smart tariffs incorpo-
rate time-of-use pricing structures, this exclusion disproportionately removed time-of-
use tariff users from the RCT sample. As a result, only 14% of RCT participants were on
a time-of-use tariff at baseline, compared to 75% in the DiD sample.?” To align the tariff

composition across the two groups, we calculated the baseline shares of standard versus

35We assumed that once a customer first adopts IO Go, they remain “treated” in the sense that their experience with
the tariff continues to shape their behavior, even if they subsequently switched to another Octopus tariff (Callaway
and Sant’Anna, 2021). In practice, some customers did have more complex tariff histories. Under the irreversibility
assumption, their electricity consumption patterns are considered to remain influenced by IO Go from the point of
initial adoption. We view this as reasonable for two reasons: (1) 78% of customers who adopt IO Go subsequently
remain on it for at least 12 months afterwards, and (2) it is plausible that IO Go induces some degree of habit formation,
both in EV charging routines and in household electricity use more broadly.

36This exclusion was not perfect; a small number of customers who previously had smart tariffs were part of our trial
sample. Smart tariffs are tariffs that require smart meters because their half-hourly unit rate changes.

37For historical reasons, there are a handful of time-of-use tariffs that are not “smart” tariffs; the most well-known
of which is called “Economy 7”, a tariff introduced in the 1970s to incentivize overnight electricity use, particularly for
storage heaters by offering cheaper rates during a fixed seven-hour off-peak window. In recent years, some EV owners
also adopted Economy 7 as a way to charge their vehicles at lower cost.
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time-of-use tariff users in each sample. We then reweighted the DiD observations by the
ratio of RCT to DiD shares, ensuring that the reweighted DiD sample better reflected the

RCT’s pre-treatment tariff distribution. %

Reweighting the DiD customers was important because their baseline consumption
profiles differed substantially based on prior tariff. Figure Figure A13 shows that DiD
customers on flat tariffs, DiD customers on TOU tariffs, and the RCT control group had
distinct consumption patterns before adopting IO Go, even though overall consumption
was similar across the three groups. Customers who had been on TOU tariffs already dis-
played a consumption pattern closely aligned with IO Go’s incentives: minimal afternoon
peaking and high overnight usage, consistent with many having been on Octopus Go,
which offered cheaper overnight rates from 00:30 to 05:30. In contrast, DiD customers
who had been on flat tariffs still exhibited an afternoon peak, and while they also showed
an overnight spike in consumption, its magnitude was only about one-third that of cus-
tomers on TOU tariffs. Together, these patterns indicated that many DiD customers were

already partially aligned with IO Go’s incentivized charging profile prior to adoption.

4.2 Difference-in-differences results

Figure 10 shows that the difference-in-differences estimates are notably smaller than
those from the RCT. In the unweighted specification (Column 1), IO Go adoption is asso-
ciated with a 0.06 kWh (7%) average hourly reduction in peak-period consumption, and
a 0.1352 kWh (8%) increase during off-peak hours. In contrast, the RCT estimates imply
much larger shifts: a 0.581 kWh (42%) decrease during peak periods and a 0.481 kWh
(50%) increase off-peak.

This discrepancy appears to be largely explained by differences in baseline time-of-use
tariff usage. Column 2 presents the results after reweighting the DiD sample to match
the RCT sample’s pre-treatment tariff distribution. After reweighting, the estimated in-
crease in off-peak consumption in the DiD analysis (0.451 kWh) matches the RCT anal-
ysis (0.481 kWh). However, the reduction in peak consumption is still smaller in the
DiD analysis: 0.24 kWh compared to 0.581 kWh in the RCT. This weaker peak effect

38We also implemented propensity-score reweighting. Specifically, we estimated the probability of being in the RCT
(vs. DiD) sample using a logit regression with the following covariates: (1) tariff type prior to treatment, (2) total
electricity consumption in December before the study period (December 2022 for DiD, December 2023 for RCT), (3)
the share of consumption occurring during peak hours, (4) Octopus tenure, (5) IMD rank, and (6) property value. The
resulting propensity scores were then used as weights in the DiD regression. However, we found that only the pre-
treatment time-of-use tariff indicator had a substantive effect on the results. Given this, we opted to show the results
only of the simpler tariff-based reweighting approach described in the main text.
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is compensated for by a decline in daytime, non-peak consumption in the DiD sample,
as shown in Figure A14, resulting in no overall increase in consumption. We hypothe-
size that the observed differences in the timing of impacts throughout the day arise from
compositional differences between IO GO participants and those in our RCT sample, with
DiD participants likely having greater daytime flexibility. We conclude from these results
that the RCT targeted a sample whose characteristics made their baseline consumption
less aligned with IO Go’s optimization — i.e., because their charging behavior was not
previously responding to dynamic or off-peak pricing, leaving more scope for managed

charging to change consumption in both peak and off-peak hours.

We also estimated cohort-specific treatment effects, defining cohorts by the week of
adoption. We found that treatment effects were relatively homogeneous across cohorts,

as shown in Figure A15.

Taken together, this homogeneity in treatment effects across cohorts, combined with
the close alignment of RCT and reweighted DiD estimates, suggests that the impact of
IO Go is relatively stable across adopters. The primary source of variation appears to
be baseline charging behavior, particularly whether customers were already on time-of-
use tariffs prior to adoption, rather than any inherent heterogeneity in responsiveness to

managed charging.

We also conducted a DiD analysis focusing on customers who adopted IO Go in 2024,
to make the comparison period more directly aligned with the RCT timeframe. However,
identifying which customers already owned an EV at the start of 2024 proved difficult.
We believe this is likely due to increased uptake of low-carbon technologies (LCTs). Of
particular note, there was a rise in heat pump installations at the end of 2023, driven by
the UK Government’s expansion of heat pump subsidies in October 2023.%. This increase
in LCT ownership likely produced additional consumption spikes resembling EV charg-
ing, but originating from other devices. Lacking direct observation of LCT ownership,
we cannot be sure whether changes in consumption among customers adopting IO Go in
2024 were driven by tariff adoption, adoption of EVs, or adoption of other LCT devices

that encouraged more attention paid to which tariff they were on. 4°

We partially solve this problem by restricting the 2024 sample to customers who ap-

39Coverage on heat pump takeup can be found in the BBC and Guardian. Academic research on the electricity
consumption impacts of heat pumps is documented in Bernard et al. (2024)

40This tariff-switching behavior is documented by Bernard et al. (2024), who examined households that received heat
pump installations from Octopus Energy. They found that following the installation, two-thirds of these households
adopted a smart tariff, with Intelligent Octopus being the most popular choice, possibly due to adoption of an EV at a
similar time.
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Figure 10: Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-05:30),
using a sample of 20,249 customers who first-ever enrolled in IO Go in 2023. Each panel plots treatment effects
relative to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted
by whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway
and Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption
levels. Post-treatment effects are estimated using average of all group-time average treatment effects, with weights
proportional to the group size.

peared to own an EV as of August 2023, which is (1) before the increase in the heat pump
subsidy and (2) during summer months when heat pump use is minimal. This refine-
ment improved the accuracy of EV identification but did not eliminate the possibility
that some customers adopted heat pumps or other LCTs concurrently with switching to
IO Go. The resulting 2024 DiD estimates closely matched the 2023 results for peak and
off-peak periods but showed an 8 percent increase in total daily consumption, a pattern
absent in 2023. We interpret this as reflecting contemporaneous adoption of other LCTs,

such as heat pumps. Full results and further discussion are provided in Appendix A.5.
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5 Welfare impacts

The large shifts in consumption from peak to off-peak hours, as seen in Section 3.3,
have four potential benefits: (1) benefits to consumers from lower electricity bills, (2)
lower electricity procurement costs to the electricity supplier, (3) climate change mitiga-
tion benefits via CO,e abatement, and (4) reduced grid operation and stabilization costs.
The CO,e abatement arises via two pathways: directly, through reduced consumption
during high-emissions hours (a shift we identified using our randomized encouragement
design); and indirectly, through potential substitution from internal combustion engine
(ICE) vehicles to EVs caused by lower electricity bills (also identified through our ran-
domized encouragement) that reduce the lifetime cost of EV ownership. We believe this
latter behavioral response may be important, but we acknowledge that it is uncertain and

speculative.

In this section, we first outline our methods for estimating the various benefits and
costs of IO Go adoption. We then present the direct benefits accrued in 2024. Finally, we
apply the Marginal Value of Public Funds (MVPF) framework developed by Hendren and
Sprung-Keyser (2022) to assess the welfare implications of subsidizing managed charg-

ing.

5.1 Estimation

To estimate the magnitude of these benefits, we combined administrative data from
Octopus Energy with external inputs and applied outcome-specific methods. For con-
sumer benefits, we used administrative data on daily average electricity bills per kWh.
We analyzed the impact on trial participants’ bills using an instrumental variables speci-
fication analogous to Equation (8), but where Y}j; is the mean daily bill (in £) for user i on
day t. Our outcome is the amount customers paid per kwh of electricity, and we weight

the regression by the consumption each day.*!

For supplier procurement costs, we applied an analogous IV analysis. Octopus Energy
provided administrative data on the cost per kWh of electricity during each half-hour of
the day. These costs include both the wholesale price of power and non-energy charges

such as transmission and distribution fees, but exclude grid services, such as participation

41since 10 Go customers typically charge only on a subset of days, a simple unweighted comparison across all days
would dilute the treatment effect by including many days with no charging activity.
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in ancillary markets. The wholesale price itself is a blend of hedged prices (days, weeks,
and months ahead), day-ahead prices, intra-day prices, and the final system price for
the half-hour. The exact weighting of these elements is somewhat subjective and may
vary over time, but we believe this measure more closely approximates the supplier’s
actual procurement costs than using the system price alone. Here, the outcome is Octopus

Energy’s total daily procurement cost.

To assess direct emissions impacts from shifting consumption to lower-CO,e-intensity
hours, we multiplied trial participant electricity consumption in each half-hour inter-
val by the corresponding average Marginal Operating Emissions Rate from WattTime,
and aggregated these values to the daily level.*> We analyzed the impact on CO,e from
electricity consumption using an instrumental variables specification analogous to Equa-
tion (8), but where Y}, is CO5e from electricity consumption (in grams of CO,e) for trial
participant i on day ¢.*> To estimate the potential CO,e abatement benefits from induced
substitution of internal combustion engine (ICE) vehicles to EVs, we combined IO Go bill

savings with existing estimates of EV price sensitivity.**

Finally, managed EV charging may contribute to avoiding broader electricity system
costs, though the magnitude of these benefits is uncertain. Some top-down modeling
studies suggest potentially large system-wide gains. We discuss the estimates from one

such study in the contexts of our results in the next section. 43

42 A5 described in (as described in Section 2.6, the Marginal Operating Emissions Rate is the emissions associated
with the marginal change in load on the grid (WattTime, 2022).

43We monetize this using the UK government’s SCC, which is approximately £250 per tonne of COe. This is calcu-
lated by estimating the marginal abatement cost (i.e., resource costs) per tonne of CO,. The government estimates the
amount of COje that is needed to meet the UK’s future COje targets and walks up the marginal abatement cost curve
until it hits that COe target, which hits costs at £250 per tonne of COje. This UK government approach is in contrast
to how other countries, like the US, estimate the social cost of carbon. Those other countries use the marginal damage
per tonne of COje from integrated assessment models.

44We began by estimating the average lifetime electricity bill savings from IO Go over a ten-year vehicle lifespan,
discounted to present value. We treated this as a reduction in the total cost of EV ownership. Applying a price elasticity
of EV demand of -2.547 from Hahn et al. (2024), we inferred the corresponding proportional increase in EV adoption.
To translate this into absolute uptake, we used estimates from Department for Transport (2024) that approximately
6.7% of UK households (1.95m of 28.8m households in the UK) purchase a new car each year. The resulting increase
in EV uptake was multiplied by the difference in lifecycle COje emissions between ICE vehicles (£8003.89) and EVs
(£3259.66) (Hahn et al., 2024), yielding £4744.23 in CO;e benefits per induced switch. We scaled these annual impacts
using government projections of ICE vehicle sales, which decline over time (Department for Transport, 2023), and
discounted future abatement to present value using a 3.5% rate recommended by HM Treasury (2020).

45In our pre-analysis plan, we pre-specified estimating COe impacts using the ITT framework. We did not pre-
specify the use of IV estimation for bills or COje savings. We adopt the IV approach here because it more directly
captures the causal effect of IO Go adoption—the quantity of substantive interest. While our pre-analysis plan focused
on MVPF calculations rather than consumer bills, we now report bill savings as well, as they provide an important and
policy-relevant measure of consumer benefits.
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5.2 Benefits/savings from adoption of managed charging

Al managed charging presented large consumer bill benefits. Figure 11 presents the
estimated benefits. We found that managed charging reduced consumer electricity bills
by £0.0397 per kWh, an approximately 18% decline relative to the control group. Applied
to average consumption over the analysis period, this implies a total bill reduction of

approximately £343 during our study.**%’

The electricity retailer saw similar savings in procurement costs (procurement costs
include the wholesale price of power and non-energy charges such as transmission and
distribution fees; 95% CI: £-261 to £766). Procurement savings should not be interpreted
as additional to consumer bill savings; the similarity of their magnitudes imply near
100% pass-through of savings to trial participants, at least based on the period of our
analysis (2024).48

Managed charging also yielded positive environmental benefits. Direct CO,e abate-
ment from shifting electricity consumption to cleaner off-peak hours generated a decrease
of 124kg CO,e per trial participant in 2024, which translates to estimated benefits of £35
based on a carbon value of £287 per tonne of CO,e emitted (Department for Energy Secu-
rity and Net Zero, 2023), though with wide uncertainty (95% CI: £-253 to £287). Indirect
CO,e abatement, arising from substitution from ICE vehicles to EVs, due to lower oper-
ating costs of EVs,* generated a further decrease of 143kg COye, or £40.9 (95% CI: £20.6
to £61.2), in estimated benefits.>°

We estimated a resource cost per tonne of approximately —-£1,285, based on annual bill
savings of £343 and total emissions reductions of 0.267 tonnes CO,e per customer (this
combines 0.124 tonnes COje of direct and 0.143 tonnes CO,e of indirect savings). Note

that this calculation uses the annual savings as the cost, rather than taking the net present

46Based on the average annual electricity consumption of control group trial participants not enrolled in an EV tariff
(9,063 kWh).

47The counterfactual for our £343 annual savings estimate is the average electricity bill of the control group during
the experimental period, which includes customers starting on and adopting a mix of tariffs. If instead we apply a
counterfactual based on a standard flat tariff, the estimated annual savings increase to £650. This figure is calculated
using our estimated consumption treatment effects from Figure 7, applied to the bill under the flat tariff. The £650
estimate represents a 34% bill reduction.

48The point estimate on procurement cost savings was smaller than the point estimate on bill savings, but the es-
timates” confidence intervals overlap each other’s point estimates; also note that we have not included revenue from
ancillary markets in the estimation of procurement cost savings.

49We are assuming that consumers value fuel efficiency in their decisions to buy a vehicle, which has some support
Grigolon et al. (2018); Forsythe et al. (2023).

50The confidence intervals for indirect CO,e abatement given in Figure 11 reflect only the uncertainty from the
regression of consumer bill savings on EV tariff adoption. This likely understates the true uncertainty, which is outside
the scope of this research. Additional sources of uncertainty include the price elasticity of EV adoption, the future cost
trajectory of EVs, and the relationship between EV adoption and net COje damages.
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value of present and future savings. The £343 figure corresponds to average bill savings
relative to the experimental control group; savings are £650 relative to the retailer’s stan-
dard flat tariff. The latter implies a resource cost of -£2,434 per tonne (-650 + 0.267).
Using a more conservative measure based on supplier procurement savings (£237 per
customer per year), the implied cost is —£888 per tonne (-237 + 0.267). In summary, the
tariff and technology combination was a very cost-effective way to reduce CO,e emissions,
much lower than the next best technology (Gosnell et al., 2020; Hahn et al., 2024).

Figure 11: Benefits of Adopting EV Tariff per Household in 2024
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Notes: This figure presents estimated benefits in 2024 of adopting an EV tariff. Trial participant bill savings are derived
from causal estimates using administrative data on daily average electricity bills per kWh; the estimated savings are
£343 per vehicle (95% CI: £173 to £512). Procurement cost savings are estimated at £237 (95% CI: £-261 to £766).
(These costs include both the wholesale price of power and non-energy charges such as transmission and distribu-
tion fees, but exclude revenue from grid services, such as participation in ancillary markets.) The similarity in the
magnitudes of bill and procurement savings suggests that the supplier passed through nearly all cost reductions to
customers over the 2024 analysis period. Direct CO,e abatement reflects emissions reductions trom shifting electricity
consumption to off-peak periods; these are valued at £35 (95% CI: £-253 to £324), using half-hourly marginal emissions
intensity data matched to observed load-shifting. Indirect COje abatement from ICE to EV substitution is valued at
£40.9 (95% CI: £20.6 to £61.2), estimated by combining observed IO Go bill savings with price elasticity-based pro-
jections of EV adoption and associated emissions reductions. Grid benefits are sourced from Franken et al. (2025),
showing per-vehicle value under a scenario of 100% smart charging adoption. The shaded area illustrates the range of
estimates across multiple modeled scenarios, where benefits range from £99 to £146 per year in 2035.

For savings from avoided system costs, we looked in particular at Franken et al. (2025),
who estimated that fully flexible EV-related electricity demand, relative to a baseline with
no flexible load, could reduce annual system costs in Great Britain by up to £0.25 billion

in 2025 and as much as £4 billion by 2035.5! These savings arose from both operational

51Their estimate was based on a whole-system linear cost optimization model, calibrated to assumptions used by the
UK system operator. To the best of our knowledge, Franken et al. (2025) is the study most closely aligned with our
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efficiencies, such as increased use of lower-marginal-cost renewable generation, and cap-
ital savings, including deferred investment in firm capacity and grid infrastructure. No-
tably, the study found diminishing marginal returns: the first 25% of EV users adopting
managed charging account for 50% (£2 billion in 2035) of the projected savings.>>

Our trial suggests that nearly all peak EV load can be shifted through managed charg-
ing, and that this behavior can be sustained for over a year, consistent with the assump-
tions in Franken et al. (2025). This implies that system-level benefits in the range of £2-4
billion could be feasible, conditional on widespread tariff uptake. When expressed on
a per-vehicle basis, assuming 27 million EVs on the road by 2035 (consistent with the
"Leading the Way" Future Energy Scenario from the UK National Energy System Oper-
ator (2023), in keeping with the analysis in Franken et al. (2025)), this equates to ap-
proximately £146 in system savings per vehicle in 2035 under universal managed charg-
ing.”® Under “constrained” managed charging>*, savings fall modestly to £120 per vehi-
cle. When adding flexible heat demand to the optimization, which cannibalizes some of
the benefits from EV flexibility, the per-vehicle EV contribution falls to £99.°°

5.3 Welfare impacts of subsidizing managed charging

We next evaluated the welfare implications of subsidizing managed charging, using
the £50/month incentive (total £150 across three months) offered to trial participants
as a proxy subsidy. We considered impacts over one, five, and 10 years (2024-2033),
discounting future values at the 3.5% rate recommended by HM Treasury (2020). Ten
years is a reasonable lower-bound estimate of vehicle lifetime (Bento et al., 2018; Held
et al., 2021; Kolli, 2011). However, the duration of benefits attributable to the subsidy

context on two dimensions. First, it matches our outcome of interest: assessing the grid impacts of managed charging in
monetary terms. By contrast, many other studies focus on EV deployment without more detailed modeling of managed
charging (Heuberger et al., 2020), or in terms of electricity consumption, without translating to monetary benefits
(Crozier et al., 2020). Second, it is aligned in the geographic focus on Great Britain. There are several relevant studies
examining system benefits of managed charging in California (Li and Jenn, 2024) or the United States more broadly
(Powell et al., 2022), but to the best of our knowledge, Franken et al. (2025) provides the most directly applicable
evidence for our setting in Great Britain. For an overview of studies relevant to our setting, see Thornhill and Deasley
(2018).

52 As Franken et al. (2025) notes, “The first units of flexible EV charging tap into uncontested renewable generation,
unlocking large benefits with a relatively modest flexibility rollout. However, beyond the 25% mark, excess renewable
generation becomes more scarce slowing down further gains."

53In 2025, Franken et al. (2025) estimates the value is £94 per EV; the value is lower than in 2035 due to greater grid
constraints in 2035 potentially solved by EV flexibility.

54In Franken et al. (2025), the constraints are: automation only between 12 am and 4 am and 12% of consumers opt
out of flexible charging each day.

53These system benefits estimates are consistent with existing industry and research findings, and sit at the lower
end of reported ranges. For instance, The Utility Playbook: Turning EV Grid Risk into a $30 Billion Opportunity (2025)
projects system savings of between $145 and $575 per actively managed EV by 2035.
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also depends on how long subsidized customers remain more likely than non-subsidized
customers to adopt IO Go. This compliance advantage may decay more quickly than the
vehicle lifetime, although in our data the encouragement effect remains relatively stable

over the full year of observation.

The relevant welfare benefits in this case are (1) partial transfer of the subsidy to
consumers and (2) CO,e abatement. To estimate the share of the subsidy that constitutes a
transfer, we inferred the proportion of marginal versus inframarginal adopters. Adoption
was 6.98% in the email-only group and 9.31% in the £50/month group, implying that
25% of adopters were marginal.’® We assumed inframarginal adopters (75%) valued the
£150 incentive at its full face value (i.e., a 100% transfer of the total £150 to consumers).
For marginal adopters (25%), we assumed an average valuation of 50% of the subsidy.>’

Combining these assumptions yields an average transfer of £0.875 per £1 of subsidy.

For welfare benefits from CO,e abatement, we applied the estimated per-adoption
benefit discussed above, but scaled it down to reflect that only 25% of adopters were

induced by the subsidy.’®

We excluded reductions in trial participant bills from our
welfare calculation, invoking the envelope theorem: these trial participants could have
adopted IO Go without the subsidy but chose not to. We also assumed no producer sur-
plus changes (e.g., procurement cost savings for Octopus Energy), under the assumption
of a competitive retail electricity market. Finally, we excluded the indirect CO,e benefits
from increased EV adoption, since, again by the envelope theorem, a subsidy for man-
aged charging should not affect EV uptake among trial participants who were already

considering adoption.>”

Changes in costs to the government include: (1) the subsidy itself, (2) lost VAT revenue
from reduced electricity bills, (3) with greater uncertainty, a climate-related fiscal exter-
nality (increased tax revenue from higher economic growth due to the climate mitigation
from CO,e abatement), and, most speculatively, (4) avoided costs associated with elec-
tricity grid balancing. The VAT loss is calculated as 5% of the £343 annual reduction in

electricity bills, totaling £12.42 less government revenue per customer. This translates to

56Calculated as (9.31 — 6.98)/9.31 = 25%.

57For marginal adopters, we do not observe whether the first or last £1 of the subsidy induced adoption. If it were the
first, the entire subsidy would be valued; if the last, the valuation would approach zero. Following the classic Harberger
triangle approximation to deadweight loss (Harberger, 1964), and the approach in Hendren and Sprung-Keyser (2020)
and Hahn et al. (2024), we assume a uniform distribution of latent subsidy valuations, consistent with a linear demand
curve.

58We used the point estimate of the CO,e impact, despite the statistical imprecision around that estimate.

59This welfare calculation deviates from our pre-analysis plan, but we believe these deviations more accurately reflect
the full set of social returns that would accrue under real-world implementation. For more details on exact deviations,
please see Appendix A.3.
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a fiscal cost of approximately £3.10 for each marginal IO Go adopter. The climate-related
fiscal externality is 1.07%°C of the monetized value of CO,e abatement attributable to IO
Go adoption. This amounts to £3.22 in additional government revenue per marginal 10

Go adopter.

In total, these costs and benefits imply an MVPF of 0.887 over 1 year, 0.933 over 5

61 For the remainder of the discussion, we focus on the

years, and 0.982 over 10 years.
10-year estimate, while estimates for 1 and 5 years are presented in A16.5> This MVPF
implies that for every £1 of fiscal cost to the government, the program generated £1.232
in societal benefits. The fiscal cost includes not only the direct subsidy but also the loss of
VAT revenue due to lower energy bills, bringing the total cost per £1 of subsidy to £1.255.
(i.e., % = 0.982). The ratio of these benefits to costs is then 0.982. We calculated this
using:

xds+ Edx
MVPF = xds+ Vdx+ Cdx+ Gdx (11)

where x is quantity and s the subsidy. E represents CO, benefits to individuals; V, C and
G represent VAT, climate change fiscal externalities, and avoided grid balancing costs

respectively.

The change in government costs from avoided grid balancing are uncertain. They
may be zero. In a well-functioning electricity market, the benefits of shifting to lower-
marginal-cost generation and deferring investment in generation, transmission, and dis-
tribution infrastructure should be internalized by market participants. Thus, while the
overall system benefits of IO Go may be large, only a small share of those would accrue
to the government. However, if there are market failures such that the value of EV flex-
ibility is not fully internalized, there may be rationale for further policy intervention to
incentivize managed charging, such as subsidies.®®> We find that if £70 (48%) of the £146

60We assume that the UK accounts for 3.2% of global GDP (PwC, 2024), and that 33.5% of UK GDP accrues to
the government as tax revenue (Office for Budget Responsibility, 2024). The PwC estimates are a weighted average
of projections from national statistical authorities, EIKON from Refinitiv, IMF, Consensus Economics, the OECD, and
Fitch Solutions. We therefore use the PwC estimate as it consolidates projections from these institutions into a single
figure. The product of these shares yields 1.07%.

61 As noted above, the duration of benefits depends not just on vehicle lifetime, but also on how long subsidized
customers remain more likely than non-subsidized customers to adopt IO Go.

62We also present MVPFs using two alternative SCC values: (a) Bilal and Kinzig (2024), which estimates an SCC of
$1,367 for 2024, and (b) Interagency Working Group on Social Cost of Greenhouse Gases, United States Government,
which estimates an SCC of $55.3 for 2024.

63This issue has some symmetry to the MVPF of healthcare subsidies, as the MVPF varies greatly depending on
whether low-income individuals pay for their own healthcare, hospitals do, or the government does (Finkelstein et al.,
2019).
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Figure 12: Marginal value of public funds of subsidizing managed charging over 10
years, 2024-2033
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Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging tariff over 10
years, from 2024-2033. Customer surplus is based on a decomposition of marginal and inframarginal adoption under the £50/month
offer, following the approach of Hahn et al. (2024). Direct COje benefits reflect emissions reductions from shifting electricity use
to cleaner hours, scaled to marginal adopters. Indirect COe benefits are excluded under the assumption that AI managed charging
subsidies do not affect EV uptake among inframarginal adopters. Estimated costs to government include the subsidy, lost VAT revenue,
and increased tax receipts from climate-related fiscal externalities. Grid balancing benefits are shown separately, based on Franken
et al. (2025) estimates of per-vehicle system savings under three scenarios. Only a share of these may accrue to government.
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in per-customer benefits in 2035 identified by Franken et al. (2025) were borne by the
government, the MVPF of the £150 subsidy would be infinite.%%

6 Generalizability to other countries

A natural question is whether the effects we estimated in the United Kingdom gen-
eralize to other markets. Octopus currently offers IO Go in seven countries, of which
four — Germany, Spain, the United States (Texas), and the United Kingdom — have a
substantial number of customers. Exact customer counts are commercially sensitive and
cannot be disclosed, but all four markets have sufficient adoption to allow for meaningful
comparisons of consumer behavior. Details on how IO Go is structured in each market

are presented in Table A14.

To assess whether treatment effects are likely to hold beyond the UK setting, we begin
by presenting descriptive statistics on customer behavior and charging patterns under
IO Go in other countries. We then recalibrate our model to incorporate the behavioral
patterns observed in the data, to assess the welfare margins of RTP versus IO. Finally,
we explore which observable dimensions of customer behavior appear most related to

variation in treatment effects in the UK setting.

6.1 Cross-country charging behavior

We examined three key dimensions in comparing IO Go users across countries. First,
plug-in behavior, referring to how often and when vehicles are connected to be ready to
charge. Second, override (“bump") behavior, which measures how frequently users in-
tervene in supplier managed schedules. Third, consumption profile throughout the day.
Together, they show how the behavioral foundations of managed charging vary across

markets.

We present these three dimensions for the four countries: UK, Germany, Spain, and
United States. In addition, we also show the descriptive statistics for early adopters in
the UK, as defined by those who took up IO Go in the first six months since it was rolled
out. The UK has by far the most widespread usage of IO Go, with about two orders of

641n this context, “infinite” does not mean literally unlimited welfare gains; rather, it is a formal term indicating that
the government’s net fiscal cost is negative, so, following Hendren and Sprung-Keyser (2020), the policy is treated as
having an infinite MVPF (a Pareto improvement).
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Figure 13: Plug-in Rate By Hour-of-Day

Notes: This figure plots, by hour of day, the percentage of active users who had their EVs plugged in. A user is
considered active during a given hour if that hour falls between their first-ever and last-ever recorded plug-in event.
We use a sample of 4,442 IO Go users across the four countries.

magnitude more customers than the other countries we analyze; we therefore present
statistics of early adopters, which could be more comparable to the customers from other

countries.

Across countries, UK customers were plugged in the least overall, and exhibited the
strongest variation in plug-in rates over the day (Figure 13). In contrast, customers in
other countries kept their vehicles connected for a greater share of the day. This may be a
pattern associated with earlier adopters rather than with the country itself; early adopters
in the UK had higher plug-in rates than later UK adopters. The lower daytime plug-in
rates among all but the earliest adopters in the UK suggest that customers there provided
the AI with fewer opportunities to optimize charging, while more constant plug-in avail-
ability likely enabled greater algorithmic flexibility in Germany, Spain, and the United
States.

Overrides ("bump charging”) were more common outside the UK, although still in-
frequent overall. Many customers across all countries never used the bump function at
all: 55% in the UK, 43% in Germany, 43% in Spain, and 56% in the United States (Fig-

ure 14). The highest share of bump-charged electricity occurred in Germany, where 3.3%
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Figure 14: Proportion of Consumption Bump Charged Per Customer

Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. The horizontal axis shows, for each customer, what share of their total consumption was through
overriding the schedule. The vertical axis shows the cumulative proportion of customers. We use a sample of 4,442 IO
Go users across the four countries.

of EV electricity consumption resulted from overrides (Figure A18), and there was an
10.7% probability of bumping for each charge-day (Table A15). The patterns suggest a
behavioral substitution: customers who plug in less frequently also tend to intervene less
often, whereas those who leave vehicles connected more consistently appear more likely
to occasionally override the Al schedule, though note that we do not have causal evidence

to support these hypotheses.

Despite higher rates of bump charging outside the UK, the vast majority of charging
still occurred during overnight periods, as shown in Figure 15. Using EV charging data,
the figure plots average hourly EV consumption alongside average household electric-
ity use for a random sample of non-EV households in each country. Across all settings,
IO Go users displayed a pronounced overnight spike in charging—around 0.4 kWh per

hour—indicating that most charging remains concentrated in off-peak nighttime hours.

In the UK RCT, adoption of IO Go shifted roughly 0.5 kWh per hour of consumption
from peak to off-peak periods (i.e., our 42% reduction in peak consumption observed
in Figure 7). The magnitude of the overnight 0.4 kWh spike observed across all four
countries is broadly consistent with this shift, implying a similar volume of flexible load
from EV charging. This consistency suggests that the consumption response identified

experimentally in the UK is likely to be similar across other markets.
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Figure 15: Cross-Country Consumption Profiles

Notes: The figure plots hourly electricity consumption for a random sample of customers across IO Go countries.
Blue lines show EV charging consumption, based on telemetry data from IO Go users, while light purple lines show
household consumption among non-EV households. All panels use 2024 data, except Panel 2, which presents 2023
consumption data for customers who adopted IO Go during its initial rollout period (September 2022 — March 2023).

6.2 Cross-country robustness of the welfare gains of IO compared to
RTP

We can now calibrate override behavior and welfare crossovers (for RTP vs. 10 Go)
across four major markets using observed override frequencies, tariff spreads, and em-
pirical override magnitudes—full calculations are in Appendix A.7. The expected welfare
loss per override is A= Ppeak Aleft q°, combining each country’s peak-landing probabil-
ity, effective price differential, and typical override energy. With RTP elasticity ¢ = —-0.2
and a baseline welfare gap AW, = 0.095 per EV-day,°> we compute the crossover rate
B* = AWy/A at which IO and RTP yield equal welfare. The results show that welfare
losses per override vary widely—about £0.07 in the United Kingdom, £0.05 in Germany,
£0.03 in the United States, and less than £0.01 in Spain—driven mainly by tariff spreads

rather than user behavior.

65The baseline welfare advantage of 10, AW, reflects the expected daily welfare gain from intelligent optimization
relative to RTP in the absence of overrides, computed under an attention cost of £0.20 per session and average charging
elasticity € = —0.2. Where IO users allocate approximately 20% less flexible demand during peak hours compared with
RTP users.
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Observed override rates (0.019-0.107 per EV-day) are an order of magnitude below
the corresponding partial-load crossovers (0.33-3.96 per day). Consequently, IO remains
strongly welfare-superior to RTP in all markets, even when only one-quarter of load is
automated (a = 0.25). Germany represents the tightest case, reflecting its combination
of frequent overrides and moderate price differentials, but the observed behavior still
lies well below the parity threshold. The United Kingdom and Spain exhibit especially
large welfare margins, while the United States lies between the two extremes. Overall,
these results indicate that intelligent charging is behaviorally robust: even with realistic
user intervention rates, coordination gains from automated scheduling easily outweigh

the welfare cost of overrides under current tariff and behavioral conditions.

6.3 Heterogeneity in treatment effects based on customer charging be-

havior

We next examined which dimensions of charging behavior drive heterogeneity in our
estimated impacts. Specifically, we focused on behaviors that shape the potential for man-
aged charging to shift load from peak to off-peak hours. Because 10 Go specific telemetry
is only available once customers have adopted the tariff, we cannot directly observe these
behaviors for non-adopters. We therefore use a difference-in-differences design among
participants in our field experiment who later adopted IO Go. Approximately 55% of
RCT participants who adopted IO Go did so during the incentivized period, while the
rest adopted in the 9 months afterwards. This staggered adoption pattern produces suf-

ficient variation to support a difference-in-differences style analysis.

We estimated heterogeneous treatment effects by plug-in rate — measured both as
the proportion of all hours in which a customer’s EV is plugged in and, separately, the
proportion of peak hours with an active plug-in. We reason that these measures capture
the degree of availability of the vehicle for managed charging. However, we interpret
them as descriptive correlates rather than causal drivers of heterogeneity, since plug-in
behavior is endogenous and also may be influenced by tariff adoption. We find substan-
tial variation: households with higher plug-in rates experienced markedly larger shifts
of electricity use from peak to off-peak periods (Figure 16). This pattern suggests that
households providing the AI with more frequent charging opportunities enable greater

flexibility in shifting demand away from system peaks.

We also examined heterogeneity along other behavioral dimensions. First, we con-
55



Figure 16: Heterogeneity in Impacts by Plug-in Behavior

(a) Impacts by Quintile of Plug-in Rate

Off-Peak Peak

Estimated Impact on

Hourly Consumption
(kwh)

A

Q1 Q2 Q3 Q4 Qs Q1L Q2 Q3 Q4 Q5
0-11% 11-15% 15-20% 20-29% 29-80%  0-11% 11-15% 15-20% 20-29% 29-80%

(b) Impacts by Quintile of Plug-in Rate During Peak Hours

Off-Peak Peak
Estimated Impacton 1.0
Hourly Consumption
(kwh)

0.5

0.0

QL Q2 Q3 Q4 Q5 Ql Q2
0-36% 36-52% 52-66% 66-79% 79-100%  0-36% 36-52% 52-66% 66-79% 79-100%

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. Panel (a) shows impacts by the
quintile of the plug-in rate, and panel (b) shows impacts by the quintile of plug-in rate during peak hours (16:30-
20:30). Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are
computed using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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sidered "bump” charging. Households that have ever used the bump function show a
noticeably larger increase in off-peak consumption, but their reduction in peak-period
usage is statistically indistinguishable from non-bump households (Figure A19). Second,
we assess heterogeneity by users’ preferred “ready-by” times and target charging levels,
finding no systematic differences in either peak or off-peak effects (Figure A20). Taken
together, these results suggest that, for reducing peak-hour consumption, plug-in avail-

ability is the dominant behavioral factor shaping treatment effects.

Finally, connecting these findings to our cross-country descriptive statistics, we noted
that non-UK markets exhibited higher and more consistent plug-in rates throughout the
day (Section 6.1). Taken together, these results suggest that the flexibility gains from

Al-managed charging are likely to generalize across countries.

7 Discussion

Our findings make three key contributions to the literature. First, using a field trial
unique in its scale, we provided evidence on how real-time managed charging can re-
shape EV charging behavior at scale in the UK. Specifically, we found that managed
charging led to a 42% reduction in household electricity demand during peak hours,
with all of this demand shifted to low-cost, low-emission off-peak periods overnight. In
contrast to prior observational studies or simulations, our randomized incentive design
enabled causal inference about the elasticity of managed EV charging consumption to
energy system price signals. This bridges a critical gap between the theoretical benefits

of demand-side flexibility and the practical realities of consumer responsiveness.

These consumption impacts occurred without requiring manual input or sustained
behavior change from trial participants: over half of adopters never overrode the auto-
mated schedule, and override events comprised just 2.3% of electricity use. This high-
lights the potential of automation through AI to unlock demand-side flexibility while

respecting EV owners’ preferences and constraints.

The automation embedded in IO Go appears to enhance responsiveness to grid sig-
nals, outperforming static time-of-use tariffs, especially during the evening and overnight
periods of the day. This reinforces the argument that, as EVs move from early to mass
adoption, managed charging responsive to real-time grid conditions is needed to avoid

“herding” behavior and new peaks that may result from static time-of-use schedules. To
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reinforce this market price, network operators may consider more dynamic charges to

manage congestion on low-voltage networks contending with high EV penetration.

Second, by comparing the outcomes of our randomized experiment with those from
a standard difference-in-differences design, our results suggest that the impact of man-
aged charging was relatively stable across different types of adopters. Impacts were ho-
mogeneous across cohorts of adopters in our difference-in-differences sample, and — af-
ter reweighting our difference-in-differences sample to match the RCT sample on pre-
adoption tariff, we found similar results between the two evaluations. Thus the pri-
mary source of variation in impact appears to be baseline charging behavior, particularly
whether trial participants were already on smart or off-peak tariffs prior to adoption,

rather than any inherent heterogeneity in responsiveness to managed charging.

Third, we quantified the welfare impacts across four dimensions — consumer costs,
producer profits, environmental outcomes, and avoided costs associated with electricity
grid balancing. We found that the managed charging reduced trial participants bills sub-
stantially. It also caused large reductions in CO,e emissions and retailer procurement

costs, though the estimates were imprecise and should be interpreted with caution.

These findings carry significant policy relevance. As electricity systems transition to-
ward variable renewable generation, flexible demand from EVs presents a major oppor-
tunity for system balancing. Policymakers should ensure wholesale markets reflect the
temporal and locational value of electricity and lower non-commodity electricity costs to
ensure suppliers, aggregators, and other market participants are exposed to price as close

as possible to the real-time marginal cost of electricity.

All in all, we have provided causal evidence that AI managed charging — when paired
with real-time pricing on the retailer procurement side without direct pass-through to
customers — can substantially reshape electricity consumption patterns at scale. By causally
identifying behavioral responses, we have shown that, in Britain, managed charging of
EVs can reduce peak load without contravening consumer preference. Our findings im-
prove scientific understanding of the economics of energy consumption and market de-
sign, highlighting how well-structured incentives and dynamic pricing might align pri-
vate behavior with policy objectives. Ultimately our study suggests that, as electrifica-
tion expands in Britain and other advanced economies, managed charging can serve as a
tool for aiding grid reliability and realizing environmental outcomes via a market-based

framework.
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A Appendix

A.1 Tables

Table Al: Experimental Balance

Variable

Control Mean Email + £0/Mth Email + £5/Mth Email + £50/Mth Email + £50/Mth (No Bump)

Not Always Octopus Customer
Octopus Tenure

Proportion Total kWh Peak

Smart Tariff Onboarding Processes
Structural Winnings (GBP/kWh)
Total kWh

Total kWh Stdev

N

0.26

2.72
[1.63]
0.23
[0.08]
0.22
[0.47]
752.64
[684.94]
4,082.53
[2,599.11]
0.77
[0.25]

2,205

0.00
(0.01)
-0.03
(0.04)
0.00
(0.00)
0.00
(0.01)
-9.72
(16.50)
-42.42
(62.80)
-0.01
(0.01)

7,720

0.00
(0.02)
-0.01
(0.06)

0.00
(0.00)

0.00
(0.02)

-17.76
(25.08)
-33.33
(97.97)
-0.01
(0.01)

1,101

0.00
(0.02)
-0.03
(0.06)

0.00
(0.00)
-0.01
(0.02)

-26.70
(23.84)
-65.43
(91.35)

0.00

(0.01)

1,102

0.00
(0.02)
-0.01
(0.06)

0.00
(0.00)
0.00
(0.02)

-18.12

(25.02)

-38.96

(94.82)

0.00
(0.01)

1,105

Note: The first column shows the mean and [standard deviation]| for the control group. Each row and each subsequent encouragement
column represents an individual regression of the row variable on an indicator for receiving the encouragement in the column. The
encouragements appear to be balanced on baseline characteristics. The standard errors are in parentheses. Density plots of these covariates

are shown in Figure A2. Detailed definitions of these covariates can be found in Appendix A.4.2.
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Table A2: Impact of Encouragements on Take-up of 10 Go

Dependent Variable: 10 GO
Model: (1)
Variables
Email + £0/Month 0.034*
(0.004)
Email + £5/Month 0.033™
(0.007)
Email + £50/Month 0.059"
(0.008)
Email + £50/Month (No Bump) 0.057*
(0.008)
Post-Incentive Period 0.004
(0.004)
Email + £0/Month x Post-Incentive Period -0.003
(0.004)
Email + £5/Month x Post-Incentive Period -0.006
(0.007)
Email + £50/Month x Post-Incentive Period -0.003
(0.006)
Email + £50/Month (No Bump) x Post-Incentive Period -0.016"
(0.006)
Fixed-effects
Block Yes
Week of Year Yes
Fit statistics
Control Mean (Incentive Period) 0.0365
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting 10
Go in the 12 months since emails were sent out. The outcome is a binary indicator
for weekly use of the Octopus Go tariff. Encouragement indicators are interacted an
indicator for whether the week is during the incentive period, three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and week, are reported in
the parentheses. Mean IO Go take-up rate during the incentive period is reported for
the control group. “Test £0 = £50" is the p-value on the test of equality between the first
and third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality
between the first and fourth coefficient.
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Table A3: Robustness, Impact of Encouragements on Take-up of IO Go, Daily Data

Dependent Variable: 10 GO
Model: (1)
Variables
Email + £0/Month 0.034*
(0.004)
Email + £5/Month 0.034*
(0.007)
Email + £50/Month 0.059**
(0.008)
Email + £50/Month (No Bump) 0.057*
(0.008)
Post-Incentive Period 0.004
(0.005)
Email + £0/Month x Post-Incentive Period -0.003
(0.005)
Email + £5/Month x Post-Incentive Period -0.006
(0.007)
Email + £50/Month x Post-Incentive Period -0.004
(0.007)
Email + £50/Month (No Bump) x Post-Incentive Period  -0.017*
(0.007)
Fixed-effects
Block Yes
Day Yes
Fit statistics
Control Mean (Incentive Period) 0.023
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 4,580,025

Clustered (Participant & Day) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting 10
Go in the 12 months since emails were sent out. The outcome is a binary indicator for
daily use of the Octopus Go tariff. Encouragement indicators are interacted an indicator
for whether the date is during the incentive period, which is the three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and day, are reported in the
parentheses. Mean IO Go take-up rate during the incentive period is reported for the
control group. “Test £0 = £50" is the p-value on the test of equality between the first and
third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality between
the first and fourth coefficient.
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Table A4: Impact of Encouragements on Electricity Consumption

Peak Off-Peak Overall Peak Off-Peak Overall

Model: (1) (2) (3) (4) (5) (6)
Variables
Email + £0/Month -0.029* 0.018 -0.005

(0.011)  (0.012) (0.007)
Email + £5/Month -0.011 0.018 0.004

(0.016)  (0.017) (0.010)
Email + £50/Month -0.013 0.025 0.003

(0.016)  (0.017) (0.010)
Email + £50/Month (No Bump) -0.033™ 0.026 -0.006

(0.016) (0.018) (0.010)
Any Encouragement -0.026™ 0.019* -0.004

(0.010)  (0.012) (0.007)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1.4 1 1 1.4 1 1
Observations 2,646,712 4,631,639 15,879,842 2,646,712 4,631,639 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Each column reports coefficients from separate regressions of hourly electricity consumption (in
kWh) on indicators for encouragement assignment. Columns (1), (2), and (3) estimate intention-to-treat
effects for each arm; columns (4), (5), and (6) pool all treatment arms into a single binary indicator. The
dependent variable is consumption during either the peak (16:30-20:30), off-peak (23:30-05:30), or over-
all hours. All regressions control for baseline consumption, and include fixed effects for week-of-year and
randomization block. Standard errors, clustered by participant and week, are reported in parentheses.
Means consumption for the control group are reported at the bottom of each panel.
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Table A5: Impact of Encouragements on Octopus Go Take-up

Dependent Variable: Octopus Go
Model: (1)
Variables
Email + £0/Month 0.0101™*
(0.0031)
Email + £5/Month 0.0099*
(0.0052)
Email + £50/Month 0.0045
(0.0049)
Email + £50/Month (No Bump) 0.0066
(0.0051)
Fixed-effects
Block Yes
Week of Year Yes
Fit statistics
Control Mean 0.025
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements
on adopting Octopus Go in the 12 months since emails were sent out.
The outcome is a binary indicator of for weekly use of the Octopus
Go tariff. The specification controls for fixed effects for randomization
block and week. Standard errors, clustered by participant and week, are
reported in parentheses. Mean Octopus Go take-up rate is reported for
the control group.
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Table A6: Selection into IO Go and Baseline Characteristics

Variable (1) (2) (3) (4)
Email + £0/Month 0.044 0.043 0.044 0.041
(0.005) (0.005) (0.005) (0.005)
Email + £5/Month 0.042 0.042 0.042 0.039
(0.008) (0.008) (0.008) (0.008)
Email + £50/Month 0.060 0.059 0.059 0.055
(0.009) (0.009) (0.009) (0.009)
Email + £50/Month (No Bump) 0.062 0.061 0.062 0.057
(0.009) (0.009) (0.009) (0.009)
Structural Winnings (Z-Score) -0.012 -0.005 -0.002
(0.002) (0.004) (0.005)
Baseline TOU Tariff 0.023 0.025 0.018
(0.007) (0.009) (0.008)
Baseline kWh -0.008 -0.009 -0.007
(0.004) (0.005) (0.004)
IMD Tercile 2 0.038 0.040 0.035
(0.007) (0.008) (0.008)
IMD Tercile 3 0.034 0.039 0.034
(0.007) (0.008) (0.007)
Octopue Tenure (Years) -0.006 -0.006 -0.005
(0.001) (0.002) (0.002)
Covariates + Covariates interacted + Nonparametric struc. winnings
Sq. Corr. Coef 0.0043 0.0072 0.0085 0.0093
p-score range [0.035,0.19] [0.023, 0.22] [0.0002, 0.32] [0.006, 0.25]
p-score R2 with (1) 0.60 0.51 0.44

Note: This table shows the estimation results of a logit regression of takeup of IO Go on encouragement group and
participants’ baseline characteristics. We show the marginal effects at the means of the covariates.

Table A7: Robustness, Impact of EV Tariff on Peak Consumption (kWh)

Main 4 Instruments  £0/Mth  £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

EV Tariff -0.581* -0.498* -0.697** -0.269 -0.305 -0.587* -0.473* -0.554
(0.224) (0.209) (0.247)  (0.338)  (0.230) (0.236) (0.214) (0.336)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Observations 2,646,712 2,646,712 1,980,876 663,401 660,592 662,359 1,307,900 2,646,712

First Stage F-Stat 52.720 14.066 44.154 20.302 37.764 40.647 78.180 52.715

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during peak
hours (16:30-20:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main
specification, also reported in Figure 7; (2) defines a separate instrument for each encouragement group; (3) restricts to just the
£0/Month group and the control group; (4) restricts to just the £5/Month group and the control group; (5) restricts to just the
£50/Month group and the control group; (6) just the £50/Month (No Bump) group and the control group; (7) restricts to the
6 months after encouragement emails were sent out; (8) does not control for baseline consumption. All specifications control
for baseline consumption (except column 6), and fixed effects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses. The control mean is calculated over the same time periods for control group
trial participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A8: Robustness, Impact of EV Tariff on Off-Peak Consumption (kWh)

Main 4 Instruments  £0/Mth  £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

EV Tariff 0.481* 0.468* 0.501* 0.284 0.280 0.414 0.686™" 0.118
(0.261) (0.244) (0.282)  (0.400)  (0.269) (0.270) (0.236) (0.392)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Observations 3,970,004 3,970,004 2,971,234 995,188 990,964 993,611 1,961,825 3,970,004

First Stage F-Stat ~ 53.449 14.283 44.658 20.564 38.473 41.213 78.912 52.756

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during
off-peak hours (23:30-05:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1)
is our main specification, also reported in Figure 7; (2) defines a separate indicator for each encouragement group; (3) restricts
to just the £0/Month group and the control group; (4) restricts to just the £50/Month group and the control group; (5) just the
£50/Month (No Bump) group and the control group; (6) restricts to the 6 months after encouragement emails were sent out; (7)
we do not control for baseline consumption. All specifications control for baseline consumption (except column 6), and fixed
effects for randomization block and week. Standard errors, clustered by participant and week, are reported in parentheses.
The control mean is calculated over the same time periods for control group trial participants not enrolled in an EV tariff. The
bottom row shows the first-stage Wald F-statistic.

Table A9: Robustness, Impact of EV Tariff on Overall Consumption (kWh)

Main 4 Instruments  £0/Mth £5/Mth  £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables

EV Tariff -0.079 -0.060 -0.125 0.032 -0.038 -0.132 0.002 -0.203
(0.150) (0.140) (0.163) (0.226)  (0.150) (0.159) (0.154) (0.247)

Fixed-effects

Week of Year Yes Yes Yes Yes Yes Yes Yes Yes

Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics

Control Mean 1 1 1 1 1 1 1 1

Observations 15,879,842 15,879,842 11,884,810 3,980,493 3,963,619 3,974,217 7,847,164 15,879,842

First Stage F-Stat 52.809 14.090 44.257 20.465 37.912 40.763 78.281 52.747

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on electricity consumption over the whole day. The
instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main specification; (2) defines
a separate indicator for each encouragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to
just the £50/Month group and the control group; (5) just the £50/Month (No Bump) group and the control group; (6) restricts to
the 6 months after encouragement emails were sent out; (7) we do not control for baseline consumption. All specifications control
for baseline consumption (except column 6), and fixed effects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses. The control mean is calculated over the same time periods for control group trial
participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A10: Heterogeneity of IO Go Take-up, by IMD and Baseline Electricity
Consumption

x IMD x Baseline kWh

Model: (1) (2)
Variables
Email + £0/Mth x Tercile 1 0.021 0.029*
(0.018) (0.010)
Email + £0/Mth x Tercile 2 0.045* 0.050"
(0.009) (0.009)
Email + £0/Mth x Tercile 3 0.026* 0.016"
(0.007) (0.009)
Email + £5/Mth x Tercile 1 0.001 0.035*
(0.026) (0.016)
Email + £5/Mth x Tercile 2 0.052* 0.033*
(0.017) (0.015)
Email + £5/Mth x Tercile 3 0.022* 0.019
(0.011) (0.015)
Email + £50/Mth x Tercile 1 0.009 0.069
(0.031) (0.018)
Email + £50/Mth x Tercile 2 0.062* 0.064™
(0.018) (0.017)
Email + £50/Mth x Tercile 3 0.059 0.036™
(0.013) (0.016)
Email + £50/Mth (No Bump) x Tercile 1 0.050 0.080"
(0.033) (0.019)
Email + £50/Mth (No Bump) x Tercile 2~ 0.062" 0.045"
(0.017) (0.016)
Email + £50/Mth (No Bump) x Tercile 3 ~ 0.035" 0.009
(0.012) (0.015)
Tercile 2 -0.009 -0.013
(0.017) (0.012)
Tercile 3 0.010 -0.0005
(0.017) (0.013)
Fixed-effects
Block Yes Yes
Week of Year Yes Yes

Fit statistics
Observations 15,879,842 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in impact of encouragements
on take-up of 10 Go, interacting encouragement group with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption
terciles. The outcome is a binary indicator for weekly use of the Octo-
pus Go tariff. The specification controls for baseline consumption, and
fixed effects of randomization block and week of year. Standard errors,
clustered by participant week, are reported in parentheses.
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Table A11: Heterogeneity of Impact of EV Tariffs, by IMD and Baseline Electricity

Consumption
x IMD x Baseline kWh
Off-Peak Peak Off-Peak Peak
Model: (1) (2) (3) (4)
Variables
(EV Tariff) x (Tercile 1) 0.924 1.16 0.295 -0.300
(0.960) (1.08) (0.291)  (0.221)
(EV Tariff) x (Tercile 2) 0.604 -0.882* 0.504 -0.399
(0.388) (0.383) (0.316) (0.277)
(EV Tariff) x (Tercile 3) 0.508* -0.207 0.998 -0.759
(0.297) (0.269) (0.778) (0.725)
(Other Tariff) x (Tercile 2) 0.078 0.327* 0.059 0.182™
(0.127) (0.140) (0.072) (0.060)
(Other Tariff) x (Tercile 3) 0.098 0.218 0.131 0.441*

(0.127)  (0.138)  (0.134)  (0.125)

Fixed-effects
Block Yes Yes Yes Yes
Week of Year Yes Yes Yes Yes

Fit statistics
Observations 3,970,004 2,646,712 3,970,004 2,646,712

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in IV effects of EV tariff adop-
tion on hourly electricity consumption during off-peak (23:30-5:30) and
peak (16:30-20:30) periods, interacting EV tariff adoption with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption ter-
ciles. All specifications control for baseline consumption, and fixed ef-
fects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses.
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Table A12: Bump Charging and Baseline Characteristics

Dependent Variable: I(Ever Bumped)
Model: (1)
Variables
Constant 0.385™
(0.050)
ZEmail+£0/Mth 0.004
(0.032)
ZEmail+£5/Mth -0.063
(0.047)
ZEmail+£50/Mth -0.002
(0.045)
ZEmail+£50/Mth(NoBump) -0.002
(0.046)
Frac. of kWh During Peak (Z-Score) 0.039"*
(0.012)
Total Consumption (Z-Score) -0.006
(0.015)
Structural Winnings (Z-Score) 0.005
(0.016)
IMD Tercile 2 0.029
(0.043)
IMD Tercile 3 0.052
(0.041)
Octopus Tenure (Years) 0.007
(0.007)
I(Baseline TOU) 0.078"
(0.033)
Fit statistics
Observations 2,146
Dependent variable mean 0.45573

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports regression results where
the dependent variable is an indicator for whether
a participant has ever engaged in bump charging.
Explanatory variables include the encouragement
group assignment and baseline characteristics. De-
tailed definitions of these baseline characteristics can
be found in Appendix A.4.2.
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Table A13: Baseline Differences Between IO Go and Octopus Go Trial Participants

Variable IO Go Mean Octopus Go Mean 10 Go - Octopus Go  p-value
Octopus Tenure 2.51 2.58 -0.06 0.34
[1.65] [1.64]
Total kWh 3912.32 3753.20 159.12 0.076*
[2343.05] [2174.77]
Total kWh Stdev 0.77 0.77 0.00 0.74
[0.24] [0.22]
Not Always Octopus Customer 0.24 0.24 0.00 0.95
[0.43] [0.43]
Smart Tariff Onboarding Processes 0.34 0.26 0.08 0.00025***
[0.58] [0.51]
Structural Winnings (GBP/kWh) 687.70 684.59 3.11 0.9
[630.75] [592.95]
Proportion Total kWh Peak 0.22 0.23 -0.01 0.057*
[0.08] [0.08]

Note: Column (1) shows the mean and [standard deviation] for IO Go users; column (2) reports the same
for Octopus Go participants; column (3) shows the difference in means between columns (1) and (2);
column (4) reports the p-value from a two-sided t-test of equality of means. Detailed definitions of these
covariates can be found in Appendix A.4.2.
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Table A14: Overview of 10 Go Tariff Features by Country

Price during

Country Cheap charging charging window Additional Benefits Launch Date
6 hour window: 7p/kWh for the whole home

UK 23:30-05:30 7p/kWh between 23:30 and 05:30 May 2022
Dynamic based on  As per regular Lower per kWh rate

us forecasts tariff price when connected to IO Go December 2022

Germany . . . Super-cheap electricity for

(NB: changed as of 85‘88{3‘;880“’ Bn%l/rlr:\l/lvmh of the entire home between August 2023

June 2025) : ) ’ 00:00 and 05:00

Spain Eﬁf?ggﬁg based on 0.07/kWh n/a September 2024

Table A15: Bump Charging per Charge Day

Country Bumps/day Peak bumps/day Overnight bumps/day Daytime bumps/day
United Kingdom 0.019 0.003 0.003 0.013
United Kingdom - Early Adopters 0.022 0.005 0.003 0.015
Germany 0.107 0.019 0.008 0.080
Spain 0.105 0.007 0.027 0.071
United States 0.035 0.011 0.004 0.020

Note: This table presents the frequency of bumping each day there is a charge event, for each of the four major
countries where IO Go is active. This uses data from a random sample of 4,442 users across the four countries.
Peak times are defined as 16:30-20:30 for the UK, 17:00-21:00 for Germany, 20:00-00:00 for Spain, and 15:00-19:00
for the United States. Overnight times are defined as 23:00-5:00am, except in Germany, where IO Go there defines
overnight off-peak as 00:00-05:00. Daytime are all other non-peak and non-evening hours.
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A.2 Figures

Figure A1l: Tariff Rates in 2024

Unit Rate
(p/kwWh)
40
30
Standard
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(a) Intelligent Octopus Go
Unit Rate
(p/kwh)
40
30
20 Standard

10 \ Octopus Go Off-Peak

0 Jan 23 Jul 23 Jan 24 Jul 24 Jan 25
(b) Octopus Go

Notes: Panel (a) shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30-05:30, dark purple) and the peak daytime period (05:30-23:30, light purple). For comparison, we also in-
clude the Flexible Octopus tariff from Octopus Energy, which maintains a flat rate throughout the day. Panel (b) shows
analogous tariff rates for Octopus Go’s off-peak overnight period (00:30-5:30) and peak daytime period (5:30-00:30).
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Figure A2: Distribution of Baseline Covariates Across Encouragement Arms
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Notes: This figure plots kernel density estimates of baseline covariates across encouragement arms. The similarity of
these distributions illustrates that block randomization achieved good covariate balance across arms, consistent with
the regression-based balance tests reported in Table Al. Note that the variable ‘Not Always Octopus Customer’ has
been excluded, as it is a binary variable that is unsuitable for a density plot. Detailed definitions of these covariates
can be found in Appendix A.4.2.



Figure A3: Take-up of EV Tariffs Over Time by Trial Arms

Intelligent Octopus Go Intelligent Octopus Go or Octopus Go
Takeup
(percentage

points)

20% 20%

10% 10%

0%] 0%

0 5 10 0 5 10

Month Since Email

-+ Control Email + £0/Mth — Email + £5/Mth — Email + £50/Mth Email + £50/Mth (No Bump)

Notes: This figure plots the fraction of trial participants in each trial group that has taken up an EV tariff. The left panel
shows take-up of the Al managed charging tariff, IO Go, which combines static time-of-use pricing with remote control

of EV charging. The right panel shows take-up of either IO Go or Octopus Go, the latter being a static time-of-use tariff
without supplier control.
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Figure A4: Probability of First-Ever Opening Emailed Encouragement
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opened | oo
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= Z=Email + £50/Mth -~ Z=Email + £50/Mth (No Bump)

Notes: This figure plots the cumulative proportion of customers who first opened an encouragement email over time.
Solid lines show Kaplan—-Meier survival estimates of the probability of not yet opening, with shaded areas denoting
95% confidence intervals. Time is measured from the date of the encouragement email until the first observed open.

Figure A5: Completion Rate for Participants Signing Up for IO Go

Onboarding
Completion
Rate

75%

50%

25%

0,
0% Control (Pure) Email + £0/Mth ~ Email + £5/Mth ~ Email + £50/Mth  Email + £50/Mth

(No Bump)
Notes: This figure shows the percentage of participants who, after attempting to sign up for IO Go during the incentive
period, successfully completed the onboarding process. Completino of onboarding includes testing the compatibility
of their vehicle or charger with the IO Go app.
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Figure A6: Heterogeneity by Index of Multiple Deprivation
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Notes: This figure presents heterogeneity in treatment effects by Index of Multiple Deprivation (IMD) terciles. Panel A
shows the effect of each encouragement group on take-up of IO Go, interacting encouragement with deprivation tercile
(T1: most deprived); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue)
periods, again interacting EV tariff adoption with deprivation tercile; regression results are also presented in Table A11.
Panel C shows the proportion of trial participants in the experimental sample in each tercile. Confidence intervals are
shown at the 95% level. All specifications control for baseline consumption, and fixed effects for randomization block
and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by participant
and week.
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Figure A7: Heterogeneity by Baseline Electricity Consumption
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Notes: This figure presents heterogeneity in treatment effects by baseline total consumption (kWh). Panel A shows
the effect of each encouragement group on take-up of IO Go, interacting encouragement with deprivation tercile (T1:
lowest consumption); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue)
periods, again interacting EV tariff adoption with baseline consumption tercile; regression results are also presented
in Table A11. Panel C shows mean hourly consumption for each tercile, with 95% standard error bars. Confidence
intervals are shown at the 95% level. All specifications control for baseline consumption, and fixed effects for random-
ization block and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by
participant and week.

Figure A8: Participant Preferences and Behaviors
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Notes: This figure summarizes IO Go customer preferences and behavioral patterns. Panel (a) shows the joint distribu-
tion of customer-selected end state of charge and charge completion time, as specified via the Octopus app. Panel (b)
displays the frequency of plug-in and unplug times.
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Figure A9: Preferences for End State of Charge and Completion Time - By
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Notes: This figure shows the joint distribution of customer-selected end state of charge and charge completion time,
as specified via the Octopus app. The trial participants are split by the encouragement group they were randomly

assigned.
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Figure A10: Preferences for End State of Charge and Completion Time - By
Encouragement Group
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Notes: This figure shows the frequency of plug-in and unplug times. The results are shown separately by randomized
encouragement group.

Figure A11: Distribution of Proportion of Charge-Hours Bumped Per Customer
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. The horizontal axis shows, for each customer, what share of their total charge-hours was “bumped"
(overridden). The vertical axis shows the cumulative proportion of customers. Charge-hours here are hours where any

charging occurs.
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Figure A12: Bump Charge Behaviors - By Encouragement Group
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the Al managed
charging schedule. Results are shown separately by randomized encouragement group. The left panel shows the
proportion of trial participants who never used bump charging. The right panel shows the share of total electricity

consumption that came from bump charging.

Figure A13: Comparison of Baseline Consumption Profiles
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Notes: This figure shows baseline hourly electricity consumption patterns for customers included in the DiD and
RCT analyses. For the DiD sample, baseline refers to consumption prior to adopting IO Go. For the RCT sample,
baseline refers to control group participants who were not on an EV tariff. "Flat" indicates customers who were on a
flat tariff before switching to IO Go, while "TOU" refers to those previously on a time-of-use tariff. The average daily
consumption during the baseline period was 1.1 kWh for DiD-Flat customers, 1.02 kWh for DiD-TOU customers, and
1.0 kWh for the RCT control group. The shaded areas represent 95% confidence intervals, with errors clustered at the

account user level.
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Figure A14: Difference-in-Differences Estimate of IO Go, by Hour-of-day
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Notes: This figure reports effect of adopting the IO Go tariff on hourly electricity consumption (in kWh), split by
hour of the day. These are estimated using a sample of 20,249 customers who first-ever enrolled in IO Go in 2023,
weighted by whether the customer was previously on a time-of-use tariff. Estimates are computed using the Callaway
and Sant’Anna (2021) estimator. Confidence intervals are shown at the 95% level.

Figure A15: Cohort Specific Difference-in-Differences Estimate of IO Go
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Notes: This figure reports cohort-specific estimates of the effect of adopting the IO Go tariff on hourly electricity con-
sumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-5:30). These are estimated using
a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by whether the customer was previ-
ously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna (2021) estimator. Confidence
intervals are shown at the 95% level.
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Figure A16: Marginal value of public funds of subsidizing Al managed charging
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(b) 5 years, 2024-2028

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of (a) 1 year, and (b) 5 years. Customer surplus is based on a decomposition of marginal and
inframarginal adoption under the £50/month offer, following the approach of Hendren and Sprung-Keyser (2020).
Direct COje benefits reflect emissions reductions from shifting electricity use to cleaner hours, scaled to marginal
adopters. Indirect COje benefits are excluded under the assumption that managed charging subsidies do not affect
EV uptake among inframarginal adopters. Estimated costs to government include the subsidy, lost VAT revenue, and
increased tax receipts from climate-related fiscal external‘é{es. Grid stabilization benefits are shown separately, based
on Franken et al. (2025) estimates of per-vehicle system sa lgs under three scenarios. Only a share of these may accrue
to government.



Figure A17: Marginal value of public funds of subsidizing Al managed charging,
Alternative SCC
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(b) 10 years, SCC from Interagency Working Group

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of 10 years. Panel (a) uses the SCC estimate from Bilal and Kénzig (2024); panel (b) uses the SCC
estimate from Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Customer
surplus is based on a decomposition of marginal and inframarginal adoption under the £50/month offer, following
the approach of Hendren and Sprung-Keyser (2020). Direct COje benefits reflect emissions reductions from shifting
electricity use to cleaner hours, scaled to marginal adopter9 Andirect CO;e benefits are excluded under the assumption
that managed charging subsidies do not affect EV uptake among inframarginal adopters. Estimated costs to govern-
ment include the subsidy, lost VAT revenue, and increased tax receipts from climate-related fiscal externalities. Grid
stabilization benefits are shown separately, based on Franken et al. (2025) estimates of per-vehicle system savings un-
der three scenarios. Only a share of these may accrue to government.


https://www.regulations.gov/document/EPA-HQ-OPPT-2021-0057-0097
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Figure A18: Scheduled and Bump Charging, By Hour-of-Day

Notes: This figure plots, by hour of day, the percentage of electricity consumption that occurred during that hour. This
consumption is further divided into charging triggered by bump (charging initiated by users overriding the schedule)
versus charging scheduled by IO Go. We use a sample of 4,442 IO Go users across the four countries.
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Figure A19: Estimated Impact of IO GO, by “Bump" (Override) Behavior

-0.50

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates for
customers who (i) have “bumped"”, or overridden the supplier managed schedule, and (2) who have never bumped.
Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed
using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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Figure A20: Estimated Impact of IO GO, by User Preferences

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the 10 Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates
for customers by their settings for when they need the car ready and how much charge is needed: (1) default or less
ambitious - 8:00 a.m. ready-by time and 80% charge, or later/lower, (2) ambitious — either an earlier ready-by time
or higher charge, and (3) most ambitious — both earlier and higher charge. Estimates are also separately estimated by
peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed using the Callaway and Sant’Anna (2021)
estimator. Error bars represent the 95% confidence interval.
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A.3 Deviations from the Pre-Analysis Plan

This experiment was pre-registered with the American Economic Association (AEA)
under Trial No. 0013037. While we aimed to follow the pre-analysis plan (PAP) as closely
as possible, a number of deviations became necessary in the course of implementation
and analysis. Below, we detail the key departures from the PAP. Where applicable, corre-

sponding changes to regression specifications are noted via footnotes in the main text.

* Data: Originally, our consumption data was to be aggregated on the hour (e.g.,
00:00, 01:00, etc.). However, 10 Go tariff rates begin on the half-hour (e.g., 23:30
rather than 00:00), we adjusted our data aggregation accordingly. All half-hourly

data was therefore aligned to begin on the half-hour mark.

* Data: We had pre-specified that electricity consumption data would be aggregated
to the hour-day level. However, due to computational constraints in processing and
analyzing high-frequency data, we instead aggregated consumption to the week x

hour-of-day level.

* Data: We included 12 months of post-encouragement data, rather than the 6 months
originally proposed, as we initiated our analysis later than anticipated and took ad-
vantage of the longer available data window. This change in data window does not
substantively change our results, as shown in column (7) of Table A7, Table A8, and
Table A9.

* Analysis: To improve precision and account for pre-existing consumption patterns,
we included a control for baseline average hourly electricity consumption in our
regression models. This adjustment was not pre-specified, but we show the version
of the regression that does not include baseline consumption in column (8) of Ta-
ble A7, Table A8, and Table A9. Coefficients for the peak consumption and overall
consumption are similar, while the coefficient for the off-peak consumption changes
from 0.515 (main specification) to 0.164 (no baseline consumption). We view this
more as a loss of precision than of a substantive change in the underlying effect.
As can be seen in Column (8), without baseline consumption as a control, the esti-
mates become extremely noisy, and are statistically indistinguishable from the main

specification.

* Analysis: Our pre-specified IV analysis planned to use the randomized encourage-

ments as instruments for just IO Go adoption. However, given that the randomized
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encouragements increased enrollment in both Intelligent Octopus Go and Octopus
Go, we defined treatment as adoption of either EV tariff, rather than IO Go alone.
This adjustment was necessary to preserve the exclusion restriction in our instru-
mental variables analysis, a requirement we did not know would be necessary at the

outset of the trial.

* Analysis: Following the concerns raised in Mogstad et al. (2021) regarding the in-
terpretation of IV estimates with multiple instruments, we use a single binary in-
strument combining all encouragement groups. This approach helps avoid com-
plications such as negative weights and improves interpretability under a common
first-stage assumption. We report results from our pre-specified analysis using the
four instruments separately in Figure 7, Table A7, Table A8, and Table A9. These in-
clude both the joint specification with all four instruments and separate regressions

where each encouragement serves as an instrument individually.

e Analysis: Our pre-specified DiD sample included all customers who adopted 10
Go in 2023. In the final analysis, our DiD analysis restricted the sample to cus-
tomers who likely owned an EV by December 2022. This was to ensure that ob-
served changes in consumption patterns are due to changes in charging behavior,
rather than the initial uptake of EVs. We also re-weighted this restricted DiD sam-
ple by pre-adoption tariff to better understand the extent to which differences be-
tween RCT and DiD were due to pre-adoption tariff (this re-weighting was not pre-
specified). We also added a separate DiD analysis of customers who adopted DiD in
2024, which was not pre-specified. However, this analysis is not a part of our main

findings, as detailed in Appendix A.5.

* Analysis: For our DiD analysis, we prespecified restricting control cohorts to cus-
tomers who adopt IO GO within 30 days. However, our final analysis used a twelve-
week window. This was to balance comparability of treated and control groups
against the length of the post-adoption estimation horizon. Comparability was as-
sessed by examining pre-treatment trends, and we selected the longest horizon that
yielded satisfactory pre-trend balance. Additionally, we added an anticipation pe-
riod, which was not part of the original specification. This decision followed a re-
view of pre-trends, especially in the 2024 analysis, where we observed a rise in

off-peak consumption in the four weeks before IO Go adoption (Figure A25b).

* Welfare: In keeping with the pre-analysis plan, we used the £150 incentive as a
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proxy subsidy, with J-PAL as proxy government. However, we refined our welfare
analysis to better capture the long-term and system-wide implications of the inter-
vention. To this end, we looked at CO,e impacts over a 10-year time period; exam-
ined how the MVPF would change when we included avoided grid balancing costs;
and included lost VAT as an extra cost to the government of the subsidy. While these
additions increase the measured benefits, we believe they more accurately reflect
the full set of social returns that would accrue under real-world implementation. In
keeping with the pre-analysis plan, we assumed that trial participants who enrolled
in response to the £0/month email reflected inframarginal participants, while the
incremental take-up in the £50/month group represented marginal adopters with
an average willingness to pay equal to 50% of the subsidy, consistent with standard
MVPF assumptions.

Welfare: We originally pre-specified estimating CO,e impacts using the ITT frame-
work. We did not pre-specify the use of IV estimation for bills or CO,e savings. We
adopt the IV approach here because it more directly captures the causal effect of
IO Go adoption—the quantity of substantive interest. While our pre-analysis plan
focused on MVPF calculations rather than consumer bills, we now report bill sav-
ings as well, as they provide an important and policy-relevant measure of consumer
benefits.
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A.4 Additional details on design of field trial

A.4.1 Reproduction of email-based encouragements

Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an Electric Vehicle?

If you do have an Electric Vehicle, Intelligent Octopus Go could save you up to £700 a year.

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligent Octop: is the UK’s most popular EV tariff and it works with
more than 280 electric car models and chargers. And, when you sign up to Intelligent Octopus Go,
you get the following benefits:

Potential savings of up to £700 a year via smart charging at a super low rate alongside six
hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling your
charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more tl
600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save even

more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.

Love and Power,

Alex Schoch

Figure A21: Randomized Encouragement Group 1 (Email + £0/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills.
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Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in March, we will pay you up to £15 over April, May and June for each day you stay on
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligen us is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £5 per month during April, May and June for being on Intelligent
Octopus Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.

Love and Power,

Alex Schoch

Figure A22: Randomized Encouragement Group 2 (Email + £5/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £15.
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Hi [%first_name | there%)],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in March, we will pay you up to £150 over April, May and June for each day you stay on
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intelligen us is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during April, May and June for being on Intelligent
Octopus Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell us about it here to check if you're eligible for one of our

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.

Love and Power,

Alex Schoch

Figure A23: Randomized Encouragement Group 3 (Email + £50/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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Hi [%first_name | there%],

My name is Alex, and | look after all things related to EV charging at Octopus. | noticed your home’s
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do
you drive an electric vehicle?

If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if
you switch in February, we will pay you up to £150 over March, April, and May for each day you
stay on Intelligent Octopus Go. This offer is valid for the next 14 days — through Feb 29.

Switch to Intelligent Octopus Go

About Intelligent Octopus Go

Designed to help you save, Intellige is the UK’s most popular EV tariff and it works
with more than 280 electric car models and chargers. And, when you sign up to Intelligent
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during March, April, and May for being on Intelligent
Octopus Go minus £2.00 for each day that you “bump charge” by using the Octopus app to
instantly charge your EV or otherwise suspend automated charging with Intelligent Octopus
Go.

Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night.

Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we'll handle the rest, scheduling

your charger to refuel your car at the cheapest, greenest times.

8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save

even more.

If you're not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive
tech like a heat pump or home battery, tell it here heck if 're_eligibl

other smart tariffs. We're constantly working on cutting-edge solutions to help you save while
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart
tariff, let us know.

Any questions? Just reply to this email.
Love and Power,

Alex Schoch

Figure A24: Randomized Encouragement Group 4 (Email + £50/Mth, No Bump)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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A.4.2 Block randomization implementation

We implemented block randomization on trial participant account identifiers using

Mahalanobis distance calculated over the following pre-encouragement variables:

1. Tenure with Octopus: Years since a customer’s earliest import tariff contract with

Octopus Energy (as of August 31, 2023).

2. Total Consumption (kWh): Total electricity use (kWh) from February 15 to August
31, 2023, aggregated across all half-hourly smart meter readings.

3. Consumption Variability (kWh): Standard deviation of half-hourly consumption

over the same period.

4. Not Always Octopus Energy Customer: Binary flag for whether a trial participant
originally joined Octopus via acquisition (e.g., from Bulb, Co-op) or Supplier of Last

Resort procedures.

5. Smart Tariff Onboarding Attempts: Count of historical attempts to enroll in Octo-
pus smart tariffs (e.g., Intelligent Octopus Go) prior to February 15, 2024. Includes

cases where customers initiated but did not complete the process.

6. DNO Region: Categorical variable for the customer’s Distribution Network Oper-
ator region. For accounts with multiple active meter points, we used the region
linked to the most recent tariff as of August 31, 2023.

7. Expected Structural Winnings: Estimated monetary difference between a customer’s
actual electricity cost (under observed tariff contracts) and a counterfactual IO Go
contract from February 15 to August 31, 2023. We assumed an off-peak rate of
£0.075/kWh and a peak rate of £0.30/kWh for IO Go, and ignored taxes, standing

charges, and regional price variation.

8. Peak-Hour Consumption Share: Proportion of total electricity usage (Feb—Aug 2023)
occurring during 16:00-20:00, a period of high grid constraint.

Full details of structural savings calculations and data preparation are available upon

request.
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A.5 2024 difference-in-differences

As discussed in Section 4.1, we also conducted a DiD analysis focusing on customers
who adopted IO Go in 2024. However, identifying which customers already owned an
EV at the start of 2024 was difficult. This challenge likely reflected increased uptake of
low-carbon technologies (LCTs). Of particular note, heat pump installations rose sharply
at the end of 2023, following the UK Government’s expansion of heat pump subsidies in
October 2023.

To mitigate this issue, we restricted the sample to customers who appeared to own
an EV as of August 2023. We chose August 2023 because it was both (1) before the in-
crease in heat pump subsidies and (2) during summer months when heat pump use was
minimal. Nonetheless, adoption of other LCTs may still have confounded our estimates
by increasing customers’ engagement with tariff selection. This confounder was docu-
mented by Bernard et al. (2024), who examined households that received heat pump in-
stallations from Octopus Energy. They found that following the installation, two-thirds
of these households adopted a smart tariff, with Intelligent Octopus being the most popu-
lar choice, possibly due to adoption of an EV at a similar time.®® We presented the results

of the 2024 DiD analysis but advised caution in their interpretation.

We began with a sample of 146,143 customers who adopted 10 Go at some point in
2024. To be included in the final sample, customers had to have been with Octopus
Energy by August 2023, had smart-meter data available at that time, and likely owned
an EV as of August 2023. We excluded 2,039 customers who were already part of our
randomized controlled trial. After these restrictions, the final analysis sample consisted

of 9,317 customers.

Our empirical strategy mirrored the 2023 DiD analysis. We used ”not-yet-treated"
customers as controls and defined an anticipation period of four weeks, using the five
weeks prior to IO Go adoption as the reference period. We limited control cohorts to those
scheduled to adopt IO Go no later than twelve weeks after the treated group’s anticipation
period ended. Finally, we estimated a weighted version of the model to match the 2024
DiD sample to the RCT sample based on pre-treatment tariff type.

Similar to the 2023 results, Figure A25 showed that the unweighted difference-in-
differences estimates were smaller than those from the RCT. After reweighting the 2024

66 Additionally, in an internal survey, 25% of customers with a heat pump reported being on 10 Go; it is therefore
plausible that heat pump adoption itself encouraged switching to IO Go.
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DiD sample to align with the RCT’s pre-treatment tariff distribution, the estimated in-
crease in off-peak consumption (0.548 kWh) closely matched the RCT estimate (0.481
kWh). The reduction in peak consumption was smaller in the DiD analysis: 0.269 kWh
compared to 0.581 kWh in the RCT.

Figure A25: 2024 Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-05:30),
using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024. Each panel plots treatment effects relative
to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted by
whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway and
Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption levels.
Post-treatment effects are estimated using average of all group-time average treatment effects, with weights propor-
tional to the group size.

Diverging from the 2023 analysis, the decline in daytime, non-peak consumption did
not fully offset the increase in off-peak consumption, resulting in an overall rise of 1.53
kWh per day, an 8% increase in total consumption. We believe this likely reflected con-
current adoption of other LCTs, such as heat pumps, during the same period. There was

tentative evidence of this in the off-peak anticipation period in Figure A25b, although
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without direct data on LCT ownership, we could not confirm this hypothesis.

Figure A26: 2024 Difference-in-Differences Estimate of IO Go, by Hour-of-day
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Notes: This figure reports effect of adopting the IO Go tariff on hourly electricity consumption (in kWh), split by hour
of the day. These are estimated using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by
whether the customer was previously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna
(2021) estimator. Confidence intervals are shown at the 95% level.

A.6 Theoretical Model

A.6.1 Environment and Notation

Time is divided into settlement periods h = 1,...,H. Each EV-owning household i
requires E; kWh by ready-by time T;, has plug-in availability A; C {1,..., H}, maximum
charge rate x;, and charging efficiency #;;. Baseline (non-EV) load is b;;, with aggregate
by, =) ; b;y,. Total system load is

Qn = by + inh-

i

Retailer costs are c;,(Qp,) (convex) and ancillary/avoided benefits r;,(Qy,) (concave). De-
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fine the system shadow price
Cr = c4(Qn) = 1,(Qn), (12)

as in convex scheduling (Boyd and Vandenberghe, 2004; Joskow and Tirole, 2006b). House-
holds derive mobility utility U;(E;) (increasing, concave) and timing disutility i;(h) > 0.
Under RTP, they face attention/optimization cost 4; > 0 and risk penalty y; > 0 on bill
variance (Borenstein, 2007). Under IO (AI scheduling), they can override at a hassle cost
¢; > 0.

We compare four tariffs:®7

1. Flat: price p2t.
2. ToU: pPeak > poff across fixed windows.
3. RTP: hourly pETP ; households self-schedule.

4. 10 (AI managed): centralized schedule {x;,} against {¢},}; users may override.

The feasible EV-charging schedules satisfy®®

Z WihxihZEif 0 <x;, <x;. (13)
h<T, heA;

Elasticity by operative signal. Let n’ﬁ be the operative signal under regime k € {IO,RTP, ToU}

with ;0 = &, i3 'F = pRTP, 7oV = peV. Define
k
K dInQ;
€, = —— (14)
dIn,

evaluated in high plug-in hours (QI,; > 0). Let ¢;, denote marginal CO, emissions (kg/kWh).

67Qur framework builds on Joskow and Tirole (2006b), who study the welfare properties of RTP under convex
scheduling. Their analysis contrasts RTP with the absence of RTP. Where we depart is in the introduction of (i) al-
gorithmic intermediation (IO) as a distinct pricing/coordination regime, and (ii) frictions such as override behavior,
execution costs (m;y,, ¢;), and aggregate override thresholds (3*). These extensions allow us to bring the theoretical
framework into closer alignment with experimental data, in particular by capturing behavioral deviations from the
frictionless convex scheduling benchmark.

68We model EV-only RTP for comparability to IO (which optimizes EV load). If non-EV end uses are price-responsive
under whole-household RTP, the welfare gap AW, generalizes accordingly; our empirical mapping focuses on the EV
subproblem.
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A.6.2 Household and Aggregator Problems

RTP household problem. A household chooses {x;,} to minimize expected cost plus

frictions:®?

mm IE[ ZpRTleh] +7i Var( ZpRTPx,-h) + le)i(h)xih +a; - 1{actively scheduling}
h

th
(15)
s.t. Z ninxin = E;, 0 < x5, < X;.
h<T;, heA;
At interior hours, first-order conditions (FOC) take the (mean—variance) form
E[p; "]+ 2y COV( A ZPRTPXM) +i(h) = pinip, (16)

with y; > 0 the KKT multiplier on the energy requirement. The attention cost a; > 0

drives corner solutions by discouraging small reallocations.””

9This functional form is inspired by Borenstein (2007); Gabaix (2019) who variations of an expected expenditure
minimization augmented with cognitive and risk terms.

7ODerivation of (16): Rewrite the energy requirement as a KKT-friendly inequality g;(x) = E; — Y h<T, heA; NinXin <0

with multiplier y; > 0. Let S;(x,p) =Y j, pRTPXIh be the (random) daily bill. Ignoring the fixed attention cost a; (which
does not depend on {x;;} and thus only affects the extensive/corner decision), the Lagrangian is

L = E[S;] + y; Var(S lebz )xin + pi| Ei - Z NinXin | + Zazh Xip — %) Zﬁihxih'
h

h<T;

heA
with box-constraint multipliers a;p, 8, > 0. Since prices are exogenous to the household, %]E[S,’] =E[p RTI)] and
%Var(s )= 2( RTP g, ) because Var(S ]E[ (S; - i])z] = JVar(S;)/dx; = 2]E{(Si - E[Si]D(p, RTP _E[p TI)] ] Sta-

tionarity w.r.t. x;j, gives
Elp; "] + 27/1( A ZPRTP 1€) + pilh) = pinin + @in = Bin = 0.
At interior hours (0 < x;; < %), aj;, = Bir, = 0, yielding

E[pR™) + 27,(pf™ ZPRTsze) + ilh) = i

which is (16). Complementary slackness for a;j, B;;, covers corner hours.
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I0 aggregator problem. The IO scheduler minimizes social cost plus timing disutility:

min Z[Ch Q) =1 Qh] Zle ) Xin (17)

{xlh}

s.t. Z Ninxin =2 E;, 0 <xj; < X;.
hSTi,hG.Ai

The objective is convex and the constraints are affine; under Slater’s condition (capacity
slack), KKT are necessary and sufficient (Boyd and Vandenberghe, 2004).

A.6.3 Core Lemmas and Propositions

Standing assumptions for this subsection. (i) ¢,(:) convex, r;(-) concave, so ¢}, is non-
decreasing in Qy; (ii) price-taking (a single household does not affect ¢;,); (iii) Slater’s
condition holds for Eq. (17)-Eq. (13) (there exists feasible slack).

Lemma A.6.1 (Peak shaving under IO (merit-order via KKT)). Under assumptions (i)—(iii),
define the adjusted hourly cost
p+ pi(h)

Nin

(a) For each i, an IO optimum allocates charging to hours with the lowest available «;;, subject

Kin =

to Eq. (13). (b) If there exist feasible peak and off-peak hours p,o0 with x;, > «;,, then x;, > 0
implies all lower-cost hours {0 : x;, < K;p} are saturated or infeasible. Aggregating over i,
IO (weakly) lowers peak load and (weakly) raises off-peak load while daily kWh per EV is

unchanged.

Proof. Let Qp, = by, +} ; x;;. The Lagrangian is

L({xinh Apib A} Z[Ch Qn) = 4(Qn) ] 2% )Xin

+ Zﬂl Z HinXip |+ Z‘Mlh Xih — xl Z,ulhxlh 18
i

h<T;
heA
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Stationarity w.r.t. x;, gives

a[: ) ) >
oxy, cp(Qn) = 17(Qu) +;(h) = pimin + piy, — piy, = 0.
1 ~—

Ch

Cptipi(h)
Mih
xip = X; then p, > 0 and «;; < p;. Hence x;j, is nonincreasing in «;j,: the IO scheduler fills

If 0 < xj, < X; then i, = 0 and p; = = Kip. If xj = 0 then py, > 0 and x;;, > p;; if
the lowest adjusted-cost hours first, up to feasibility. If x;, > 0 while some feasible o has
Kio < kip and x;, < X;, then x;, < p; < x;,, a contradiction. Summing over i yields load

shifted from high-¢;, to low-¢, hours, conserving daily energy by Eq. (13).

Lemma A.6.2 (Elasticity ordering). In high plug-in hours,
€] 2 [eRTP] > [efeY]

Proof. Step 1 (10 upper-bound response). Consider a small perturbation dé concentrated
in hour h. Differentiating the KKT system in Lemma A.6.1 yields a linear system in
{dxp, dp;, dp;} whose solution preserves the merit order: dx;; <0 at the perturbed hour
and dx;, > 0 at some lower-«;, hours, with } ;.1 e 4. 11i¢dx;¢ = O (intra-day reallocation).

Aggregating over i,

0 10 0 10
8%; <0 ‘ ;25}; ' is maximal subject to Eq. (13).
Thus |<—:1110| is an upper bound among feasible reallocations.

Step 2 (RTP attenuation by risk/attention). From the household FOC Eq. (16), totally

differentiate across hours. Stacking in vector form,
Hi dx,- = —(I + 27/1 Zp Sl)dp,

where H; is the Hicksian substitution matrix (negative semidefinite), ¥, is the covariance
matrix of prices, and S; maps p to }_,p,x;¢. The matrix (I +2y;¥,S;) is positive semidefi-
nite for y; > 0; multiplying a negative semidefinite H; by such a factor weakly shrinks the

response (Loewner order). Furthermore, a; > 0 creates inactive hours (corners), reducing
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the response support. Aggregating over i preserves attenuation:

RTP 10
151 < 175 |

Step 3 (ToU as projection). Let P be the block-averaging operator mapping hourly prices
to ToU blocks (P? = P, ||P||, < 1). For small perturbations, dQk ~ H* dre* with H* negative
semidefinite. Under ToU, d7t™°Y = Pd7®RT? hence

ToU ToU p ;. RTP RTP ;. RTP
1[dQ™ "1l = [[H " Pdr™ "l < [H™ " dm™ |y,

SO |8Q;°U/8ph| <10Qr*/dpy|. Combining Steps 1-3 yields the stated ordering.”!

Lemma A.6.3 (Welfare ranking with frictions). With a;,y; > 0,
WIO > WRTP > WTOU > WFlat_

Proof. Let WX be per-EV social welfare (net of pure transfers). IO maximizes W for the
EV sub-load given {¢},} (Lemma A.6.1 and KKT optimality). Relative to IO,

WRTP = WO _ AW, .q — E[a;] - E[y; Var(Bill*T?)].
~——— ——
>0 >0 >0

ToU coarsens the signal (projection loss AW, > 0) and Flat removes intertemporal in-

centives entirely. Hence the stated ordering.

Proposition A.6.1 (Emissions ordering). If e, is (weakly) lower off-peak, then relative to

baseline: 10 achieves the largest emissions reduction, followed by RTP, then ToU, then Flat.

Proof. By Lemma A.6.1, 10O shifts the most load into low-¢; hours, which coincide with

7I'We do not analyze a bill-variance ordering in our empirical set-up, but with Billk = Y kak the law of total

variance gives
D_PiXi " E| Y pix;|p* ]
h h

Moving from RTP to ToU replaces p by Pp, where P is a contraction (||P||; < 1) and a Blackwell coarsening. Both the
within-state term and the between-state term weakly fall. Under IO (EV sub-load), consumers face a flat off-peak retail
rate; wholesale volatility is internalized by the aggregator, yielding

Var(Billk) =[E|Var + Var

Var(BillRTP) > var(Bill™Y) > var(Bill'©).
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low-¢;, by assumption; RTP and ToU shift less; Flat does not reallocate. Summing ejx;;,

across hours yields the ordering.

A.6.4 Overrides (“Bump Charging”): Behavior and Welfare

Override decision and probability. A household overrides in hour h iff
Vip > M+ i, (19)

where v;j, is the immediate utility from charging now and m;; the marginal benefit from

deferring to the IO-planned hour. If F;; is the CDF of v;;,, the override probability is

Bin = Pr[vin > min+ ;| = 1= Finlmin + ;). (20)

Lemma A.6.4 (Override monotonicity). If F;;, is nondecreasing, then B;, is weakly decreasing

in ¢; and in myy,.

Proof. Differentiate Eq. (20) (where densities exist): dB;/dp; = —fin(m;, + ¢;) < 0 and

similarly for m;;,. Without densities, monotonicity follows from the CDF order.

Lemma A.6.5 (Welfare effect of an override). Let h’ be the IO-planned hour and h the over-
ride hour for EV energy q;, > 0. Private net benefit is v;, —m;, — ¢; > 0 when overriding. Social

cost changes by (&, — Cy) qip; if €, > Cpy the override raises system cost.

Proof. Private part is by Eq. (19). Social part: the IO plan equalizes marginal costs across

used hours; deviating to higher-¢, increases procurement net of r;, by (¢, — ¢,) gin-

Proposition A.6.2 (Aggregate override rate). If v;; are i.i.d. with CDF F,, and m;;, € {m"8, mdef)
depending on whether 10 planned charging in h, and if p is the share of hours planned to charge,
then

B = (1-p)|1-Fy(m™ + )] + p[1 - F(mTE+ )],

where cj; is the (mean) hassle cost.

Proof. Law of total probability conditioning on planned status; apply Eq. (20) in each

state and average.
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Welfare with overrides and crossover. Let WI© and WRTP be per-EV welfare absent

overrides and define the baseline gap

AW, = WO — wRTP, (21)
If overrides occur at rate ﬁ_ with per-override loss A, IO welfare becomes

WIO+0 _ Wio _ g, (22)

We calibrate A by

/\UB

/i ~ ppeak'Ageff'qu = (mﬁxfh_mhinéh)'qgaxf (23)

where ppe,i is the probability an override lands in peak, Ac. the peak-off-peak spread
(£/kWh), and q© kWh shifted per override.

Lemma A.6.6 (IO-RTP crossover threshold). If AWy > 0 and A > 0, the override rate at
which 10 with overrides equals RTP is

-« _ AW
pr= 2 (24)

Proof. Equate Eq. (22) to WRTP = WO _ AW, and solve for f.

Proposition A.6.3 (Welfare ordering with overrides). If < p*, then WIO+O > WRIP, jf
B> B*, RTP can dominate.

Proof. From Eq. (22) and Lemma A.6.6, the sign of W!OtO — WRTP = AW, — g1 is deter-
mined by j relative to f*.

A.7 Cross-country calibration and crossover analysis

The experiment (IO vs. alternatives) identifies (i) peak-to-off-peak reallocation mag-
nitudes (Lemma A.6.1); (ii) override frequencies 3 and their timing relative to peak/off-
peak (for A via Eq. (23)); and (iii) the baseline welfare gap AW, via cost/benefit ac-
counting under no overrides. These map directly into the decision rule induced by
Lemma A.6.6.
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A.7.1 Objective and overview

This section develops a cross-country calibration of the override—welfare relationship
in IO systems. The goal is to identify, for each major IO market, the crossover override
rate—that is, the frequency of user overrides that would eliminate IO’s welfare advantage

over real-time pricing (RTP).

The analysis combines three empirical components: (1) the observed probability of
an override per charge day, from a random sample of users across the United King-
dom, Germany, Spain, and the United States; (2) the conditional peak-landing probability
Ppeak = Pr(peak bump/day)/Pr(bump/day); and (3) country-level parameters describing
tariff spreads and average energy per override q° (kWh per bump event), drawn from

IO Go pricing data.

A.7.2 Estimating AW, for the United Kingdom

This appendix documents how we estimate the baseline welfare gap AWéUK)—the per-

EV daily welfare advantage of 10 relative to RTP in the absence of overrides. The wel-
fare gap is defined as the expected daily difference in total surplus between 10 and RTP
regimes:

AW, = [UIO _ CIO] _ [URTP _ CRTP]'

where U* is the household mobility utility net of timing disutility and C¥ the expected
system procurement cost. Under RTP, households face optimization and attention fric-
tions that reduce responsiveness; under IO, scheduling is automated, internalizing sys-

tem prices without these frictions.

For the UK, we set the representative elasticity of RTP demand at € = —-0.2 and assume
a daily attention cost of a = 0.20 per EV-day. Using observed load and tariff data (off-peak
£0.07/kWh, peak £0.27/kWh; spread Aces = 0.20/kWh), we simulate hourly charging
schedules under both IO and RTP. Automated IO coordination reallocates approximately
0.375 kWh of energy per EV-day from peak to off-peak hours, yielding procurement-
cost savings of about 0.20/kWh x 0.375 = 0.075 per EV-day. In addition, IO reduces
timing disutility and bill-variance penalties by a further £0.020, as households experience
fewer inconvenient charging hours and lower price volatility exposure. Together these

components yield: AW, ") = 0.075 + 0.020 = 0.095 per EV-day.”2

72For the remaining countries, we scale AW, proportionally to the observed effective price spread Aé(z, following
e
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A.7.3 Empirical calibration of override behavior

Table A15 reports observed override behavior across countries. The United Kingdom
exhibits a low overall bump frequency (1.7% per charge day) and correspondingly low
peak-landing probability (0.3%), yielding ppeax = 0.176. Early adopters show slightly
higher values (ppeak = 0.23). In Germany and Spain, users override much more frequently
(10% per day), while in the United States roughly one-third of overrides fall in peak
windows. Average energy per override q© ranges from 1.25 kWh in Spain to around
2.4 kWh in the UK and US (see Table 16 below). Tariff spreads Ac.¢ vary widely, from
£0.17/kWh in the UK to only £0.037/kWh in the US. These differences strongly affect the

expected welfare loss per event.

Table 16: Tariff and override characteristics by country

Country  Off-peak rate Standard rate g® (kWh) Aceg (£/kWh) % bumped in peak

UK £0.24 £0.07 2.41 0.17 0.3
Germany €0.27 €0.39 2.06 0.12 1.9
Spain €0.07 €0.128 1.25 0.058 0.7
UsS $0.11 $0.147 2.45 0.037 1.1

A.7.4 Per-override welfare loss

Using the expression A = ppeakAﬁeffqo, we obtain the average loss per override (in £).
Table 17 presents results under ¢ = —0.2 and AW, = 0.095. Price spreads are expressed in

pounds for comparability.

We can see that for the four countries, the observed override rate is well below the
crossover override rate. In the UK, there is a low override frequency (1.9% per day) and
a moderate price spread yield A ~ 0.072. IO remains welfare-superior up to f*(0.25) =
0.33 per day, an order of magnitude above observed behavior. For Germany, more fre-
quent overrides and a nontrivial tariff gradient narrow 10’s margin, but the observed rate
(0.107) remains below *(0.25) = 0.47. Germany is the tightest case, where welfare par-
ity could emerge if overrides doubled. For Spain, flat tariffs imply tiny welfare penalties

(1~ 0.006). Even frequent overrides barely affect welfare: the crossover is 15.8/day (full-

AW(gC) = AW(()UK) X (AES&/AES&K)). This assumes similar elasticities and flexible load shares across markets, attribut-

ing cross-country differences in welfare to the strength of the intertemporal tariff gradient. Empirically, this yields

AwWPP ~0.067, AW % 0.032, and AW " ~ 0.021.
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Table 17: Cross-country crossover analysis (RTP ¢ = —0.2)

AV o 3 . Full-load Partial
Country Ppeak (£/kWh) g~ (kWh) A (£/override) B+ (a = 0.25) Observed rate
UK 0.1 0.17 2.41 0.072 1.32 0.33 0.0186
Germany 0.205 0.12 2.06 0.051 1.87 0.47 0.107
Spain 0.083 0.058 1.25 0.006 15.83 3.96 0.105
uUsS 0.367 0.037 2.45 0.033 2.88 0.72 0.035

Notes: The expected welfare loss per override is i = Ppeak Ao qC. Crossover rates p* (events/EV-day) are computed

as AWp/A, with AWy = 0.095 and a = 0.25 for partial-load automation. Observed rates reflect empirical daily override
frequencies. The US is from Texas.

load) and 3.96/day (a=0.25), far above observed 0.105. In the US (Texas), high ppeax but
very small Aé.¢ yield A = 0.033 and a partial crossover of 0.72/day. Observed 0.035/day
lies safely below this threshold, though steeper future tariffs could tighten the margin.

Across all countries, observed rates (0.019-0.11 per day) are an order of magnitude
below the corresponding a=0.25 crossovers, confirming that IO remains welfare-superior

even with only 25% of load automated.”’

Limitations. Our theoretical framework abstracts from several important considera-
tions. First, the welfare thresholds depend on calibrated parameters for attention costs
(a;), hassle costs (¢;), and risk-aversion penalties (y;) that are not directly observed in
our experiment; while we draw on the literature and perform sensitivity analysis, these

inputs remain assumption-driven.

Second, we model overrides as independent events with constant per-override wel-
fare loss A, whereas in reality override behavior and costs may vary systematically across

hours, days, and households.

Third, we treat plug-in behavior as exogenous to the tariff, assuming it remains fixed
across pricing regimes. In practice, customers may adapt when and how they charge
in response to tariff signals. For instance, RTP could encourage shifting plug-in times
toward periods of lower prices, whereas IO Go’s TOU pricing is fixed, and cannot flexibly
incentivize plug-in. We lack data on plug-in behavior for customers who are not on 10
Go, but future work could incorporate these behavioral responses to better capture the

interaction between tariff design and charging behavior.

73Higher elasticity (e.g. ¢ = —0.5) reduces AW, and proportionally lowers §*, narrowing 10’s advantage by roughly
20%. Yet even under € = —0.5, IO dominates in all countries except possibly Germany.
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Finally, our analysis is partial-equilibrium: prices {¢},} are taken as given and house-
holds are price-takers, omitting possible feedback effects if IO Go or RTP adoption is
widespread. These simplifications are deliberate, allowing a tractable link between model
predictions and experimental data, but they should be borne in mind when interpreting

the welfare rankings.
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